Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decision-making unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology.
Operations Research – INFORMS
Published: Feb 1, 2008
Keywords: Keywords : organizational studies ; productivity ; effectiveness/performance ; statistics ; nonparametric ; probability ; stochastic model applications ; simulation ; applications
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.