Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Large-scale atmosphere––ocean interaction over the North Atlantic and North Pacific during winter using a 14-yr record of weekly sea surface temperature and atmospheric circulation fields is examined. Singular Value Decomposition is used to quantify objectively the degree of coupling between the sea surface temperature and 500-mb geopotential height fields as a function of time lag, from −−4 weeks to ++4 weeks. The authors show that the air––sea coupling is strongest when 500-mb height leads sea surface temperature by 2––3 weeks——twice as strong as the simultaneous covariability and nearly four times as large as when sea surface temperature leads 500-mb height by a few weeks. The authors believe the 2––3-week timescale may be a reflection of high-frequency stochastic forcing by the atmosphere on the ocean mixed layer, in line with the theoretical model of Frankignoul and Hasselmann. Sensible and latent energy fluxes at the sea surface are shown to be an important component of the atmospheric forcing. The close spatial and temporal correspondence between the fluxes and SST tendencies on weekly timescales is a testament to the quality of the datasets.
Journal of Climate – American Meteorological Society
Published: Feb 9, 1996
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.