Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Ezrin has properties to self-associate at the plasma membrane.

Ezrin has properties to self-associate at the plasma membrane. Ezrin, a member of a family of proteins involved in the interaction of the microfilament cytoskeleton with the plasma membrane, plays a role in membrane translocation in gastric parietal cells (Hanzel, D., Reggio, H., Bretscher, A., Forte, J. G. and Mangeat, P. (1991). EMBO J. 10, 2363-2373). Human ezrin was expressed in and purified from Escherichia coli. It possesses all the major biophysical, immunological and physiological properties of natural ezrin. Upon microinjection in live gastric HGT-1 cells, ezrin was incorporated into the dorsal microvilli, a site where the endogeneous protein is localized. By coimmunoprecipitation and ezrin-affinity assays, two HGT-1 cell proteins of 77 and 72 kDa behaved as ezrin-binding proteins. In enriched gastric apical membranes, 125I-ezrin labelled proteins of 80, 77 and 72 kDa by overlay assay. The 80 kDa protein was identified as ezrin and the 77 and 72 kDa proteins as gastric forms of proteins structurally related to ezrin, such as radixin and moesin. In insect cells infected with a recombinant baculovirus, one-third of over-expressed ezrin accumulated at the plasma membrane. Ezrin bound a 77 kDa endogenous peripheral membrane protein, behaving as an insect counterpart of the mammalian ezrin family. In addition to the respective role of the amino- and carboxyl-terminal domains of ezrin in linking the membrane and the cytoskeleton (Algrain, M., Turunen, O., Vaheri, A., Louvard, D. and Arpin, M. (1993). J. Cell Biol. 120, 129-139), both domains interacted synergistically in a salt-dependent manner to trigger self-association of ezrin. Ezrin's self-association properties could represent another way of regulating the number of ezrin molecules bound at specific membrane sites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cell Science Pubmed

Ezrin has properties to self-associate at the plasma membrane.

Journal of Cell Science , Volume 107 ( Pt 9): -2487 – Mar 8, 1995

Ezrin has properties to self-associate at the plasma membrane.


Abstract

Ezrin, a member of a family of proteins involved in the interaction of the microfilament cytoskeleton with the plasma membrane, plays a role in membrane translocation in gastric parietal cells (Hanzel, D., Reggio, H., Bretscher, A., Forte, J. G. and Mangeat, P. (1991). EMBO J. 10, 2363-2373). Human ezrin was expressed in and purified from Escherichia coli. It possesses all the major biophysical, immunological and physiological properties of natural ezrin. Upon microinjection in live gastric HGT-1 cells, ezrin was incorporated into the dorsal microvilli, a site where the endogeneous protein is localized. By coimmunoprecipitation and ezrin-affinity assays, two HGT-1 cell proteins of 77 and 72 kDa behaved as ezrin-binding proteins. In enriched gastric apical membranes, 125I-ezrin labelled proteins of 80, 77 and 72 kDa by overlay assay. The 80 kDa protein was identified as ezrin and the 77 and 72 kDa proteins as gastric forms of proteins structurally related to ezrin, such as radixin and moesin. In insect cells infected with a recombinant baculovirus, one-third of over-expressed ezrin accumulated at the plasma membrane. Ezrin bound a 77 kDa endogenous peripheral membrane protein, behaving as an insect counterpart of the mammalian ezrin family. In addition to the respective role of the amino- and carboxyl-terminal domains of ezrin in linking the membrane and the cytoskeleton (Algrain, M., Turunen, O., Vaheri, A., Louvard, D. and Arpin, M. (1993). J. Cell Biol. 120, 129-139), both domains interacted synergistically in a salt-dependent manner to trigger self-association of ezrin. Ezrin's self-association properties could represent another way of regulating the number of ezrin molecules bound at specific membrane sites.

Loading next page...
 
/lp/pubmed/ezrin-has-properties-to-self-associate-at-the-plasma-membrane-LVIYmzTY5I

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0021-9533
DOI
10.1242/jcs.107.9.2509
pmid
7844168

Abstract

Ezrin, a member of a family of proteins involved in the interaction of the microfilament cytoskeleton with the plasma membrane, plays a role in membrane translocation in gastric parietal cells (Hanzel, D., Reggio, H., Bretscher, A., Forte, J. G. and Mangeat, P. (1991). EMBO J. 10, 2363-2373). Human ezrin was expressed in and purified from Escherichia coli. It possesses all the major biophysical, immunological and physiological properties of natural ezrin. Upon microinjection in live gastric HGT-1 cells, ezrin was incorporated into the dorsal microvilli, a site where the endogeneous protein is localized. By coimmunoprecipitation and ezrin-affinity assays, two HGT-1 cell proteins of 77 and 72 kDa behaved as ezrin-binding proteins. In enriched gastric apical membranes, 125I-ezrin labelled proteins of 80, 77 and 72 kDa by overlay assay. The 80 kDa protein was identified as ezrin and the 77 and 72 kDa proteins as gastric forms of proteins structurally related to ezrin, such as radixin and moesin. In insect cells infected with a recombinant baculovirus, one-third of over-expressed ezrin accumulated at the plasma membrane. Ezrin bound a 77 kDa endogenous peripheral membrane protein, behaving as an insect counterpart of the mammalian ezrin family. In addition to the respective role of the amino- and carboxyl-terminal domains of ezrin in linking the membrane and the cytoskeleton (Algrain, M., Turunen, O., Vaheri, A., Louvard, D. and Arpin, M. (1993). J. Cell Biol. 120, 129-139), both domains interacted synergistically in a salt-dependent manner to trigger self-association of ezrin. Ezrin's self-association properties could represent another way of regulating the number of ezrin molecules bound at specific membrane sites.

Journal

Journal of Cell SciencePubmed

Published: Mar 8, 1995

There are no references for this article.