Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Moll, D. Kuik, L. Bouter, W. Otter, P. Bezemer, J. Koten, S. Imhof, B. Kuyt, K. Tan (1997)
Incidence and survival of retinoblastoma in the Netherlands: a register based study 1862–1995British Journal of Ophthalmology, 81
Carola Guardia, C. Casiano, J. Trinidad-Pinedo, A. Báez (2001)
Cenp‐F gene amplification and overexpression in head and neck squamous cell carcinomasHead & Neck, 23
A. Almeida, Xiang Zhu, N. Vogt, R. Tyagi, M. Muleris, A. Dutrillaux, B. Dutrillaux, D. Ross, B. Malfoy, S. Hanash (1998)
GAC1, a new member of the leucine-rich repeat superfamily on chromosome band 1q32.1, is amplified and overexpressed in malignant gliomasOncogene, 16
J. François (1977)
Retinoblastoma and osteogenic sarcoma.Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde, 175 4
B. Gallie, Christine Campbell, Hollie Devlin, Allison Duckett, Jeremy Squire (1999)
Developmental basis of retinal-specific induction of cancer by RB mutation.Cancer research, 59 7 Suppl
S. Griegel, Chen Hong, Roland Frötschl, D. Hülser, V. Greger, Bemhard Horsthemke, M. Rajewsky (1990)
Newly established human retinoblastoma cell lines exhibit an “immortalized” but not an invasive phenotype in vitroInternational Journal of Cancer, 46
R. McFall, T. Sery, M. Makadon (1977)
Characterization of a new continuous cell line derived from a human retinoblastoma.Cancer research, 37 4
M. Classon, E. Harlow (2002)
The retinoblastoma tumour suppressor in development and cancerNature Reviews Cancer, 2
A. Pimkhaokham, Y. Shimada, Yohji Fukuda, Naoki Kurihara, I. Imoto, Zeng‐Quan Yang, M. Imamura, Yusuke Nakamura, T. Amagasa, J. Inazawa (2000)
Nonrandom Chromosomal Imbalances in Esophageal Squamous Cell Carcinoma Cell Lines: Possible Involvement of the ATF3 and CENPF Genes in the 1q32 AmpliconJapanese Journal of Cancer Research : Gann, 91
N Bornfeld, PK Lommatzsch, W Havers, A Schüler (1999)
Ophthalmologische onkologie
O. Oliveros, E. Yunis (1995)
Chromosome evolution in retinoblastoma.Cancer genetics and cytogenetics, 82 2
B. Gallie, D. Albert, J. Wong, N. Buyukmihci, C. Pullafito (1977)
Heterotransplantation of retinoblastoma into the athymic "nude" mouse.Investigative ophthalmology & visual science, 16 3
J. Squire, R. Phillips, S. Boyce, R. Godbout, B. Rogers, B. Gallie (2004)
Isochromosome 6p, a unique chromosomal abnormality in retinoblastoma: Verification by standard staining techniques, new densitometric methods, and somatic cell hybridizationHuman Genetics, 66
Jörg Boom, M. Wolter, R. Kuick, David Misek, A. Youkilis, D. Wechsler, C. Sommer, G. Reifenberger, S. Hanash (2003)
Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction.The American journal of pathology, 163 3
(2001)
Significance analysis of microarrays applied to the ionizing radiation response
Danian Chen, S. Pajovic, A. Duckett, Vivette Brown, J. Squire, B. Gallie (2002)
Genomic amplification in retinoblastoma narrowed to 0.6 megabase on chromosome 6p containing a kinesin-like gene, RBKIN.Cancer research, 62 4
J. Squire, B. Gallie, R. Phillips (2004)
A detailed analysis of chromosomal changes in heritable and non-heritable retinoblastomaHuman Genetics, 70
G. Rassidakis, R. Lai, T. McDonnell, F. Cabanillas, A. Sarris, L. Medeiros (2002)
Overexpression of Mcl-1 in anaplastic large cell lymphoma cell lines and tumors.The American journal of pathology, 160 6
J. Bae, C. Leo, S. Hsu, A. Hsueh (2000)
MCL-1S, a Splicing Variant of the Antiapoptotic BCL-2 Family Member MCL-1, Encodes a Proapoptotic Protein Possessing Only the BH3 Domain*The Journal of Biological Chemistry, 275
D. Abramson, Ellsworth Rm, Zimmerman Le (1976)
Nonocular cancer in retinoblastoma survivors.Transactions. Section on Ophthalmology. American Academy of Ophthalmology and Otolaryngology, 81 3 Pt 1
S. Devesa (1975)
The incidence of retinoblastoma.American journal of ophthalmology, 80 2
S. Friend, R. Bernards, S. Rogelj, R. Weinberg, J. Rapaport, D. Albert, T. Dryja (1986)
A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcomaNature, 323
A. Evans, B. Gallie, M. Jewett, G. Pond, Kirk Vandezande, J. Underwood, Y. Fradet, G. Lim, P. Marrano, M. Zielenska, J. Squire (2004)
Defining a 0.5-mb region of genomic gain on chromosome 6p22 in bladder cancer by quantitative-multiplex polymerase chain reaction.The American journal of pathology, 164 1
J. Cho-Vega, G. Rassidakis, J. Admirand, M. Oyarzo, P. Ramalingam, Aris Paraguya, T. McDonnell, H. Amin, L. Medeiros (2004)
MCL-1 expression in B-cell non-Hodgkin's lymphomas.Human pathology, 35 9
M. Riemenschneider, C. Knobbe, G. Reifenberger (2003)
Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification targetInternational Journal of Cancer, 104
W. Cavenee, W. Cavenee, T. Dryja, R. Phillips, W. Benedict, R. Godbout, B. Gallie, A. Murphree, L. Strong, Raymond White (1983)
Expression of recessive alleles by chromosomal mechanisms in retinoblastomaNature, 305
Elizabeth Hyman, P. Kauraniemi, S. Hautaniemi, M. Wolf, S. Mousses, E. Rozenblum, M. Ringnér, G. Sauter, O. Monni, A. Elkahloun, O. Kallioniemi, A. Kallioniemi (2002)
Impact of DNA amplification on gene expression patterns in breast cancer.Cancer research, 62 21
E. Matsunaga (1980)
Hereditary retinoblastoma: host resistance and second primary tumors.Journal of the National Cancer Institute, 65 1
L. Baugh, A. Hill, E. Brown, C. Hunter (2001)
Quantitative analysis of mRNA amplification by in vitro transcription.Nucleic acids research, 29 5
V. Potluri, L. Helson, R. Ellsworth, T. Reid, Fred Gilbert (1986)
Chromosomal abnormalities in human retinoblastoma a reviewCancer, 58
B. Horsthemke (1992)
Genetics and cytogenetics of retinoblastoma.Cancer genetics and cytogenetics, 63 1
Wen-Hwa Lee, J. Shew, F. Hong, T. Sery, L. Donoso, L. Young, R. Bookstein, E. Lee (1987)
The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activityNature, 329
Y. Fung, A. Murphree, A. T'ang, J. Qian, S. Hinrichs, W. Benedict (1987)
Structural evidence for the authenticity of the human retinoblastoma gene.Science, 236 4809
C. Lau, C. Harris, X. Lu, L. Perlaky, S. Gogineni, M. Chintagumpala, J. Hicks, Mark Johnson, N. Davino, A. Huvos, P. Meyers, John Healy, R. Gorlick, P. Rao (2004)
Frequent amplification and rearrangement of chromosomal bands 6p12‐p21 and 17p11.2 in osteosarcomaGenes, 39
S. Herzog, D. Lohmann, K. Buiting, A. Schüler, B. Horsthemke, H. Rehder, H. Rieder (2001)
Marked differences in unilateral isolated retinoblastomas from young and older children studied by comparative genomic hybridizationHuman Genetics, 108
M. Riemenschneider, R. Büschges, M. Wolter, J. Reifenberger, Jan Boström, J. Kraus, U. Schlegel, G. Reifenberger (1999)
Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification.Cancer research, 59 24
J. Dürig, H. Nückel, A. Hüttmann, E. Kruse, Tanja Hölter, K. Halfmeyer, Anja Führer, R. Rudolph, N. Kalhori, A. Nusch, S. Deaglio, F. Malavasi, T. Möröy, L. Klein-Hitpass, U. Dührsen (2003)
Expression of ribosomal and translation-associated genes is correlated with a favorable clinical course in chronic lymphocytic leukemia.Blood, 101 7
Frederick Li, D. Abramson, R. Tarone, R. Kleinerman, J. Fraumeni, J. Boice (1997)
Hereditary retinoblastoma, lipoma, and second primary cancers.Journal of the National Cancer Institute, 89 1
C. Eng, F. Li, D. Abramson, R. Ellsworth, F. Wong, M. Goldman, J. Seddon, N. Tarbell, J. Boice (1993)
Mortality from second tumors among long-term survivors of retinoblastoma.Journal of the National Cancer Institute, 85 14
S. Knuutila, Anna‐Maria Björkqvist, K. Autio, M. Tarkkanen, M. Wolf, O. Monni, J. Szymańska, M. Larramendy, J. Tapper, H. Pere, W. El‐Rifai, S. Hemmer, V. Wasenius, V. Vidgren, Yingchang Zhu (1998)
DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies.The American journal of pathology, 152 5
S. Richter, Kirk Vandezande, Ning Chen, Katherine Zhang, J. Sutherland, Julie Anderson, Liping Han, Rachel Panton, Patrícia Branco, B. Gallie (2003)
Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma.American journal of human genetics, 72 2
D. Lillington, J. Kingston, P. Coen, E. Price, J. Hungerford, P. Domizio, B. Young, Z. Onadim (2003)
Comparative genomic hybridization of 49 primary retinoblastoma tumors identifies chromosomal regions associated with histopathology, progression, and patient outcomeGenes, 36
M. Nilsson, L. Meza-Zepeda, F. Mertens, A. Forus, O. Myklebost, N. Mandahl (2004)
Amplification of chromosome 1 sequences in lipomatous tumors and other sarcomasInternational Journal of Cancer, 109
G. Reifenberger, J. Reifenberger, K. Ichimura, Meltzer Ps, V. Collins (1994)
Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2.Cancer research, 54 16
D. Chen, B. Gallie, J. Squire (2001)
Minimal regions of chromosomal imbalance in retinoblastoma detected by comparative genomic hybridization.Cancer genetics and cytogenetics, 129 1
A. Mairal, E. Pinglier, Elisabeth Gilbert, M. Peter, P. Validire, L. Desjardins, F. Doz, A. Aurias, J. Couturier (2000)
Detection of chromosome imbalances in retinoblastoma by parallel karyotype and CGH analysesGenes, 28
R. Suckling, P. Fitzgerald, J. Stewart, E. Wells (1982)
The incidence and epidemiology of retinoblastoma in New Zealand: A 30-year survey.British Journal of Cancer, 46
Many retinoblastomas (Rbs) show genomic alterations in addition to mutational loss of both normal RB1 alleles. The most frequent of these changes are gains on chromosomes 1q and 6p and losses on 16q. To identify the genes targeted by gains on chromosome 1q, we used quantitative‐multiplex PCR to determine DNA copy number changes in 76 primary tumors and 6 Rb cell lines. In addition, in 21 of these tumors, gene expression was analyzed by cDNA microarray hybridization. Increased copy numbers of loci on chromosome 1q were present in 34 (45%) primary tumors and in all 6 cell lines. Two regions of gain emerged, one in 1q32 and another in 1q21. Tumors with 1q gains showed higher RNA expression of several genes in these 2 regions. The clinical manifestation of tumors with and without gains was similar with regard to many aspects, including size, necrosis and calcification. However, the distribution of age at diagnosis was remarkably distinct, with earlier diagnosis in tumors without gains. This suggests that these tumors either are initiated earlier or grow faster than tumors with gains. This association with clinical manifestation indicates that gains on 1q are significant for the biology of Rb. The genes on 1q with copy number gains and overexpression are candidates that need to be tested for their individual contribution to the progression of Rb. © 2005 Wiley‐Liss, Inc.
International Journal of Cancer – Wiley
Published: Jan 10, 2005
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.