Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Axotomy within 500 μm of the soma (close axotomy) causes identified neurons (anterior bulbar cells or ABCs) in the lamprey hindbrain to lose their normal polarity and regenerate axons ectopically from dendritic tips, while axotomy at more distal sites (distant axotomy) results in orthotopic axonal regeneration from the axon stump. We performed immunocytochemical, electron microscopic and in situ hybridization analyses comparing ABCs subjected to close and distant axotomy to elucidate the mechanism by which neuronal polarity is lost. We show that polarity loss in ABCs is selectively and invariably preceded and accompained by the following cellular changes: (1) a loss of many dendritic microtubules and their replacement with neurofilaments, (2) a loss of immunostaining for acetylated tubulin in the soma and proximal dendrites, and (3) an increase of immunostaining for phosphorylated neurofilaments in the distal dendrites. We also show that these changes do not depend on either the upregulation or spatial redistribution of neurofilament message, and thus must involve changes in the routing of neurofilament protein within axotomized ABCs. We conclude that close axotomy causes dendrites to undergo axonlike changes in the mechanisms that govern the somatofugal transport of neurofilament protein, and suggest that these changes require the reorganization of dendritic microtubules. We also suggest that the bulbous morphology and lack of f-actin in the tips of all regenerating sprouts supports the possibility that axonal regeneration in the lamprey CNS does not involve actin-mediated "pulling" of growth cones, but depends instead on the generation of internal extrusive forces.
Brain Cell Biology – Springer Journals
Published: Oct 12, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.