Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Effect of Water Stress on Cortical Cell Division Rates within the Apical Meristem of Primary Roots of Maize

Effect of Water Stress on Cortical Cell Division Rates within the Apical Meristem of Primary... Abstract We characterized the effect of water stress on cell division rates within the meristem of the primary root of maize (Zea mays L.) seedlings. As usual in growth kinematics, cell number density is found by counting the number of cells per small unit length of the root; growth velocity is the rate of displacement of a cellular particle found at a given distance from the apex; and the cell flux, representing the rate at which cells are moving past a spatial point, is defined as the product of velocity and cell number density. The local cell division rate is estimated by summing the derivative of cell density with respect to time, and the derivative of the cell flux with respect to distance. Relatively long (2-h) intervals were required for time-lapse photography to resolve growth velocity within the meristem. Water stress caused meristematic cells to be longer and reduced the rates of cell division, per unit length of tissue and per cell, throughout most of the meristem. Peak cell division rate was 8.2 cells mm-1 h-1 (0.10 cells cell-1 h-1) at 0.8 mm from the apex for cells under water stress, compared with 13 cells mm-1 h-1 (0.14 cells cell-1 h-1) at 1.0 mm for controls. This content is only available as a PDF. Copyright © 1997 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Physiology Oxford University Press

Effect of Water Stress on Cortical Cell Division Rates within the Apical Meristem of Primary Roots of Maize

Plant Physiology , Volume 114 (2) – Jun 1, 1997

Loading next page...
 
/lp/oxford-university-press/effect-of-water-stress-on-cortical-cell-division-rates-within-the-KP9j04oPWN

References (29)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
0032-0889
eISSN
1532-2548
DOI
10.1104/pp.114.2.519
Publisher site
See Article on Publisher Site

Abstract

Abstract We characterized the effect of water stress on cell division rates within the meristem of the primary root of maize (Zea mays L.) seedlings. As usual in growth kinematics, cell number density is found by counting the number of cells per small unit length of the root; growth velocity is the rate of displacement of a cellular particle found at a given distance from the apex; and the cell flux, representing the rate at which cells are moving past a spatial point, is defined as the product of velocity and cell number density. The local cell division rate is estimated by summing the derivative of cell density with respect to time, and the derivative of the cell flux with respect to distance. Relatively long (2-h) intervals were required for time-lapse photography to resolve growth velocity within the meristem. Water stress caused meristematic cells to be longer and reduced the rates of cell division, per unit length of tissue and per cell, throughout most of the meristem. Peak cell division rate was 8.2 cells mm-1 h-1 (0.10 cells cell-1 h-1) at 0.8 mm from the apex for cells under water stress, compared with 13 cells mm-1 h-1 (0.14 cells cell-1 h-1) at 1.0 mm for controls. This content is only available as a PDF. Copyright © 1997 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

Plant PhysiologyOxford University Press

Published: Jun 1, 1997

There are no references for this article.