Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Lenburg, E. O’Shea (1996)
Signaling phosphate starvation.Trends in biochemical sciences, 21 10
M. Lynch, J. Conery (2000)
The evolutionary fate and consequences of duplicate genes.Science, 290 5494
Andreas Wagner (2001)
Birth and death of duplicated genes in completely sequenced eukaryotes.Trends in genetics : TIG, 17 5
K. Wolfe, D. Shields (1997)
Molecular evidence for an ancient duplication of the entire yeast genomeNature, 387
Simon Wong, G. Butler, K. Wolfe (2002)
Gene order evolution and paleopolyploidy in hemiascomycete yeastsProceedings of the National Academy of Sciences of the United States of America, 99
Robert Keogh, C. Seoighe, K. Wolfe (1998)
Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungiYeast, 14
Bertrand Llorente, Alain Malpertuy, C. Neuvéglise, J. Montigny, M. Aigle, F. Artiguenave, G. Blandin, M. Bolotin‐Fukuhara, E. Bon, P. Brottier, S. Casaregola, P. Durrens, C. Gaillardin, A. Lépingle, Odile Ozier-Kalogéropoulos, S. Potier, W. Saurin, F. Tekaia, C. Toffano-Nioche, M. Wésolowski-Louvel, P. Wincker, J. Weissenbach, J. Souciet, B. Dujon (2000)
Genomic Exploration of the Hemiascomycetous Yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiaeFEBS Letters, 487
Manolis Kellis, N. Patterson, Matthew Endrizzi, B. Birren, E. Lander (2003)
Sequencing and comparison of yeast species to identify genes and regulatory elementsNature, 423
R. Petersen, R. Petersen, T. Nilsson‐Tillgren, J. Piškur (1999)
Karyotypes of Saccharomyces sensu lato species.International journal of systematic bacteriology, 49 Pt 4
E. Bon, S. Casaregola, G. Blandin, Bertrand Llorente, C. Neuvéglise, M. Munsterkotter, U. Guldener, H. Mewes, J. Helden, B. Dujon, C. Gaillardin (2003)
Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns.Nucleic acids research, 31 4
L. Breeden (2003)
Periodic Transcription: A Cycle within a CycleCurrent Biology, 13
(1991)
Genome structure and organization in Saccharomyces cerevisiae, pp. 1–39 in The Molecular and Cellular Biology of the Yeast Saccharomyces
J. Piškur (2001)
Origin of the duplicated regions in the yeast genomes.Trends in genetics : TIG, 17 6
J. Johnston, C. Contopoulou, R. Mortimer (1988)
Karyotyping of yeast strains of several genera by field inversion gel electrophoresisYeast, 4
C. Seoighe, K. Wolfe (1999)
Updated map of duplicated regions in the yeast genome.Gene, 238 1
Dr. Ohno (1970)
Evolution by Gene Duplication
(1992)
Yeast Pre-mRNA Splicing, pp. 143-192 in The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, edited by E
C. Hittinger, A. Rokas, S. Carroll (2004)
Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts.Proceedings of the National Academy of Sciences of the United States of America, 101 39
P. Cliften, P. Sudarsanam, Ashwin Desikan, L. Fulton, B. Fulton, J. Majors, R. Waterston, B. Cohen, M. Johnston (2003)
Finding Functional Features in Saccharomyces Genomes by Phylogenetic FootprintingScience, 301
B. Dujon, D. Sherman, Gilles Fischer, P. Durrens, S. Casaregola, I. Lafontaine, J. Montigny, C. Marck, C. Neuvéglise, E. Talla, N. Goffard, L. Frangeul, M. Aigle, Véronique Anthouard, A. Babour, V. Barbe, S. Barnay, Sylvie Blanchin, J. Beckerich, Emmanuelle Beyne, C. Bleykasten, A. Boisramé, J. Boyer, L. Cattolico, Fabrice Confanioleri, A. Daruvar, L. Despons, E. Fabre, C. Fairhead, H. Ferry‐Dumazet, A. Groppi, Florence Hantraye, C. Hennequin, Nicolas Jauniaux, P. Joyet, Rym Kachouri, A. Kerrest, R. Koszul, M. Lemaire, I. Lesur, Laurence Ma, H. Muller, J. Nicaud, M. Nikolski, S. Oztas, Odile Ozier-Kalogéropoulos, Stefan Pellenz, S. Potier, G. Richard, Marie-Laure Straub, Audrey Suleau, D. Swennen, F. Tekaia, M. Wésolowski-Louvel, E. Westhof, B. Wirth, Maria Zeniou‐Meyer, I. Živanović, M. Bolotin‐Fukuhara, A. Thierry, C. Bouchier, B. Caudron, Claude Scarpelli, C. Gaillardin, J. Weissenbach, P. Wincker, J. Souciet (2004)
Genome evolution in yeastsNature, 430
F. Dietrich, Sylvia Voegeli, S. Brachat, Anita Lerch, K. Gates, S. Steiner, Christine Mohr, Rainer Pöhlmann, Philippe Luedi, Sangdun Choi, R. Wing, Albert Flavier, Thomas Gaffney, P. Philippsen (2004)
The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae GenomeScience, 304
G. Peng, J. Hopper (2002)
Gene activation by interaction of an inhibitor with a cytoplasmic signaling proteinProceedings of the National Academy of Sciences of the United States of America, 99
Manolis Kellis, B. Birren, E. Lander (2004)
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiaeNature, 428
J. Barnett, R. Payne, D. Yarrow, L. Barnett (1983)
Yeasts: Characteristics and Identification
David Gordon, C. Desmarais, P. Green (2001)
Automated finishing with autofinish.Genome research, 11 4
Susumu Ohno (1998)
The notion of the Cambrian pananimalia genome and a genomic difference that separated vertebrates from invertebrates.Progress in molecular and subcellular biology, 21
E. Louis, J. Haber (1992)
The structure and evolution of subtelomeric Y' repeats in Saccharomyces cerevisiae.Genetics, 131 3
The ancient duplication of the Saccharomyces cerevisiae genome and subsequent massive loss of duplicated genes is apparent when it is compared to the genomes of related species that diverged before the duplication event. To learn more about the evolutionary effects of the duplication event, we compared the S. cerevisiae genome to other Saccharomyces genomes. We demonstrate that the whole genome duplication occurred before S. castellii diverged from S. cerevisiae. In addition to more accurately dating the duplication event, this finding allowed us to study the effects of the duplication on two separate lineages. Analyses of the duplication regions of the genomes indicate that most of the duplicated genes (∼85%) were lost before the speciation. Only a small amount of paralogous gene loss (4–6%) occurred after speciation. On the other hand, S. castellii appears to have lost several hundred genes that were not retained as duplicated paralogs. These losses could be related to genomic rearrangements that reduced the number of chromosomes from 16 to 9. In addition to S. castellii, other Saccharomyces sensu lato species likely diverged from S. cerevisiae after the duplication. A thorough analysis of these species will likely reveal other important outcomes of the whole genome duplication.
Genetics – Oxford University Press
Published: Feb 1, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.