Access the full text.
Sign up today, get DeepDyve free for 14 days.
Stuart Wolf, S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Molnár, M. Roukes, A. Chtchelkanova, D. Treger (2001)
Spintronics: A Spin-Based Electronics Vision for the FutureScience, 294
M. Baibich, J. Broto, A. Fert, F. Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas (1988)
Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices.Physical review letters, 61 21
Y. Ohno, D. Young, B. Beschoten, F. Matsukura, H. Ohno, D. Awschalom (1999)
Electrical spin injection in a ferromagnetic semiconductor heterostructureNature, 402
J. Teresa, A. Barthélémy, A. Fert, J. Contour, R. Lyonnet, F. Montaigne, P. Sénéor, A. Vaurès (1999)
Inverse Tunnel Magnetoresistance in Co / SrTiO 3 / La 0.7 Sr 0.3 MnO 3 : New Ideas on Spin-Polarized TunnelingPhysical Review Letters, 82
J. Teresa, A. Barthélémy, A. Fert, J. Contour, F. Montaigne, P. Sénéor (1999)
Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctionsScience, 286 5439
V. Dediu, M. Murgia, F. Matacotta, C. Taliani, S. Barbanera (2002)
Room temperature spin polarized injection in organic semiconductorSolid State Communications, 122
J. Moodera, L. Kinder, Terrilyn Wong, R. Meservey (1995)
Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions.Physical review letters, 74 16
Shui-Tong Lee, X. Hou, M. Mason, C. Tang (1998)
Energy level alignment at Alq/metal interfacesApplied Physics Letters, 72
J Moodera, L Kinder, T Wong, R Meservey (1995)
Magnetic tunnel junctionPhys. Rev. Lett., 74
E. Arisi, I. Bergenti, V. Dediu, M. Loi, M. Muccini, M. Murgia, G. Ruani, C. Taliani, R. Zamboni (2003)
Organic light emitting diodes with spin polarized electrodesJournal of Applied Physics, 93
M. Bowen, M. Bibes, A. Barthélémy, J. Contour, A. Anane, Y. Lemaître, A. Fert (2002)
Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experimentsApplied Physics Letters, 82
V. Krinichnyi (2000)
2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymersSynthetic Metals, 108
M. Julliere (1975)
Tunneling between ferromagnetic filmsPhysics Letters A, 54
J. Hayakawa, K. Ito, S. Kokado, M. Ichimura, A. Sakuma, M. Sugiyama, H. Asano, M. Matsui (2002)
The origin of bias-voltage dependence in CoFe/SrTiO3/La0.7Sr0.3MnO3 magnetic tunnel junctionsJournal of Applied Physics, 91
R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Santos, J. Brédas, M. Lögdlund, W. Salaneck (1999)
Electroluminescence in conjugated polymersNature, 397
J. Kikkawa, D. Awschalom (1999)
Lateral drag of spin coherence in gallium arsenideNature, 397
S. Xie, S. Xie, K. Ahn, Darryl Smith, A. Bishop, Avadh Saxena (2002)
Ground-state properties of ferromagnetic metal/conjugated polymer interfacesPhysical Review B, 67
A. Hanbicki, B. Jonker, G. Itskos, G. Kioseoglou, A. laboratory, Suny Buffalo (2001)
Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductorApplied Physics Letters, 80
D. Voss (2000)
Cheap and cheerful circuitsNature, 407
S. Forrest, P. Burrows, M. Thompson (2000)
The dawn of organic electronicsIEEE Spectrum, 37
Dieny, Humbert, Speriosu, Metin, Gurney, Baumgart, Lefakis (1992)
Giant magnetoresistance of magnetically soft sandwiches: Dependence on temperature and on layer thicknesses.Physical review. B, Condensed matter, 45 2
K. Tsukagoshi, B. Alphenaar, H. Ago (1999)
Coherent transport of electron spin in a ferromagnetically contacted carbon nanotubeNature, 401
A spin valve is a layered structure of magnetic and non-magnetic (spacer) materials whose electrical resistance depends on the spin state of electrons passing through the device and so can be controlled by an external magnetic field. The discoveries of giant magnetoresistance 1 and tunnelling magnetoresistance 2 in metallic spin valves have revolutionized applications such as magnetic recording and memory, and launched the new field of spin electronics 3 —‘spintronics’. Intense research efforts are now devoted to extending these spin-dependent effects to semiconductor materials. But while there have been noteworthy advances in spin injection and detection using inorganic semiconductors 4,5,6 , spin-valve devices with semiconducting spacers have not yet been demonstrated. π-conjugated organic semiconductors may offer a promising alternative approach to semiconductor spintronics, by virtue of their relatively strong electron–phonon coupling 7 and large spin coherence 8 . Here we report the injection, transport and detection of spin-polarized carriers using an organic semiconductor as the spacer layer in a spin-valve structure, yielding low-temperature giant magnetoresistance effects as large as 40 per cent.
Nature – Springer Journals
Published: Feb 26, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.