Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
The importance of p53 in chemotherapy-induced apoptosis of cancer cells is well established. p53 plays a critical role in the cellular response to DNA damage by regulating genes involved in cell cycle progression, apoptosis, and genomic stability. As a result, p53 tumor status is a critical determinant of both responses to anti-cancer treatment and clinical prognosis. Interestingly, tumors expressing certain mutant forms of p53 (“gain of function”) are particularly resistant to chemotherapy, even when compared to cells that lack any detectable p53. Until recently, the explanation for this enhanced chemoresistance was not clear. Recent studies have shown that the p53 homologues, p73 and p63, are also activated by chemotherapies, leading to tumor cell death. Now the discovery that mutant p53 interacts with p73, and that regulation of this interaction by a p53 polymorphism can modulate chemosensitvity provide a new model for how p53-family interactions can influence the response of tumors to anti-cancer therapies. Since p53 mutations are found in more than 50% of human tumors, strategies aimed at manipulating these interactions may prove useful in enhancing the chemotherapy response, and perhaps, overcoming chemoresistance.
Cell Cycle – Taylor & Francis
Published: Mar 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.