Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. DiFrancesco (1986)
Characterization of single pacemaker channels in cardiac sino-atrial node cellsNature, 324
J. Qu, A. Barbuti, L. Protas, B. Santoro, I. Cohen, R. Robinson (2001)
HCN2 Overexpression in Newborn and Adult Ventricular Myocytes: Distinct Effects on Gating and ExcitabilityCirculation Research: Journal of the American Heart Association, 89
V. Beaumont, R. Zucker (2000)
Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channelsNature Neuroscience, 3
Steffan Hoa, Henry Hunt, R. Horton, Jeffrey Pullen, Larry Peasea (1989)
Site-directed mutagenesis by overlap extension using the polymerase chain reaction.Gene, 77 1
Dario DiFrancesco, Matteo Mangoni (1994)
Modulation of single hyperpolarization‐activated channels (i(f)) by cAMP in the rabbit sino‐atrial node.The Journal of Physiology, 474
S. Kupershmidt, T. Yang, M. Anderson, A. Wessels, K. Niswender, M. Magnuson, D. Roden (1999)
Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system.Circulation research, 84 2
G. Demontis, A. Moroni, Biagio Gravante, C. Altomare, B. Longoni, L. Cervetto, D. DiFrancesco (2002)
Functional characterisation and subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptorsThe Journal of Physiology, 542
Shan Chen, Jing Wang, S. Siegelbaum (2001)
Properties of Hyperpolarization-Activated Pacemaker Current Defined by Coassembly of Hcn1 and Hcn2 Subunits and Basal Modulation by Cyclic NucleotideThe Journal of General Physiology, 117
A. Ludwig, X. Zong, J. Stieber, R. Hullin, F. Hofmann, M. Biel (1999)
Two pacemaker channels from human heart with profoundly different activation kineticsThe EMBO Journal, 18
A. Barbuti, M. Baruscotti, C. Altomare, A. Moroni, D. DiFrancesco (1999)
Action of internal pronase on the f‐channel kinetics in the rabbit SA nodeThe Journal of Physiology, 520
T. Vaccari, A. Moroni, M. Rocchi, L. Gorza, M. Bianchi, M. Beltrame, D. DiFrancesco (1999)
The human gene coding for HCN2, a pacemaker channel of the heart.Biochimica et biophysica acta, 1446 3
David Clapham (1998)
Not So Funny Anymore Pacing Channels Are ClonedNeuron, 21
A. Moroni, L. Gorza, M. Beltrame, Biagio Gravante, T. Vaccari, M. Bianchi, C. Altomare, R. Longhi, C. Heurteaux, M. Vitadello, A. Malgaroli, D. DiFrancesco (2001)
Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 Is a Molecular Determinant of the Cardiac Pacemaker Current I f *The Journal of Biological Chemistry, 276
E. Accili, D. DiFrancesco (1996)
Inhibition of the hyperpolarization-activated current (if) of rabbit SA node myocytes by niflumic acidPflügers Archiv, 431
H. Brown, D. DiFrancesco (1980)
Voltage‐clamp investigations of membrane currents underlying pace‐maker activity in rabbit sino‐atrial node.The Journal of Physiology, 308
B. Santoro, G. Tibbs (1999)
The HCN Gene Family: Molecular Basis of the Hyperpolarization‐Activated Pacemaker ChannelsAnnals of the New York Academy of Sciences, 868
D. DiFrancesco, A. Ferroni, M. Mazzanti, C. Tromba (1986)
Properties of the hyperpolarizing‐activated current (if) in cells isolated from the rabbit sino‐atrial node.The Journal of Physiology, 377
J. Qu, C. Altomare, A. Bucchi, D. DiFrancesco, R. Robinson (2002)
Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cellsPflügers Archiv, 444
B. Santoro, David Liu, Huan Yao, D. Bartsch, E. Kandel, S. Siegelbaum, G. Tibbs (1998)
Identification of a Gene Encoding a Hyperpolarization-Activated Pacemaker Channel of BrainCell, 93
Todd Kinsella, G. Nolan (1996)
Episomal vectors rapidly and stably produce high-titer recombinant retrovirus.Human gene therapy, 7 12
A. Ludwig, X. Zong, M. Jeglitsch, F. Hofmann, M. Biel (1998)
A family of hyperpolarization-activated mammalian cation channelsNature, 393
D. DiFrancesco (1993)
Pacemaker mechanisms in cardiac tissue.Annual review of physiology, 55
D. DiFrancesco, P. Tortora (1991)
Direct activation of cardiac pacemaker channels by intracellular cyclic AMPNature, 351
S. Moosmang, M. Biel, F. Hofmann, Andreas Ludwig (1999)
Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain, 380
C. Ulens, J. Tytgat (2001)
Functional Heteromerization of HCN 1 and HCN 2 Pacemaker Channels
O. Franz, B. Liss, A. Neu, J. Roeper (2000)
Single‐cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization‐activated cyclic nucleotide‐gated ion channels (Ih) in central neuronsEuropean Journal of Neuroscience, 12
J. Mellor, R. Nicoll, D. Schmitz (2002)
Mediation of Hippocampal Mossy Fiber Long-Term Potentiation by Presynaptic Ih ChannelsScience, 295
C. Altomare, A. Bucchi, Eva Camatini, M. Baruscotti, C. Viscomi, A. Moroni, D. DiFrancesco (2001)
Integrated Allosteric Model of Voltage Gating of Hcn ChannelsThe Journal of General Physiology, 117
Reinhard Seifert, Alexander Scholten, Renate Gauss, A. Mincheva, P. Lichter, U. Kaupp (1999)
Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis.Proceedings of the National Academy of Sciences of the United States of America, 96 16
H. Pape (1996)
Queer current and pacemaker: the hyperpolarization-activated cation current in neurons.Annual review of physiology, 58
Catherine Proenza, M. Baruscotti, D. DiFrancesco (2002)
From funny current to HCN channels: 20 years of excitation.News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society, 17
H. Brown, D. DiFrancesco, S. Noble (1979)
How does adrenaline accelerate the heart?Nature, 280
G. Demontis, B. Longoni, U. Barcaro, L. Cervetto (1999)
Properties and functional roles of hyperpolarization‐gated currents in guinea‐pig retinal rodsThe Journal of Physiology, 515
D. Stevens, Reinhard Seifert, B. Bufe, F. Müller, E. Kremmer, Renate Gauss, W. Meyerhof, U. Kaupp, B. Lindemann (2001)
Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuliNature, 413
Renate Gauss, Reinhard Seifert, U. Kaupp (1998)
Molecular identification of a hyperpolarization-activated channel in sea urchin spermNature, 393
C. Viscomi, C. Altomare, A. Bucchi, Eva Camatini, M. Baruscotti, A. Moroni, D. DiFrancesco (2001)
C Terminus-mediated Control of Voltage and cAMP Gating of Hyperpolarization-activated Cyclic Nucleotide-gated Channels*The Journal of Biological Chemistry, 276
A. Moroni, A. Barbuti, C. Altomare, C. Viscomi, Julie Morgan, M. Baruscotti, D. DiFrancesco (2000)
Kinetic and ionic properties of the human HCN2 pacemaker channelPflügers Archiv, 439
T. Ishii, M. Takano, Lai-Hua Xie, A. Noma, H. Ohmori (1999)
Molecular Characterization of the Hyperpolarization-activated Cation Channel in Rabbit Heart Sinoatrial Node*The Journal of Biological Chemistry, 274
Han-Gang Yu, Jiying Wu, I. Potapova, R. Wymore, B. Holmes, J. Zuckerman, Z. Pan, Hong-Sheng Wang, W. Shi, R. Robinson, M. El‐Maghrabi, W. Benjamin, J. Dixon, D. Mckinnon, I. Cohen, Randy Wymore (2001)
MinK-Related Peptide 1Circulation Research, 88
S. Moosmang, J. Stieber, X. Zong, M. Biel, F. Hofmann, A. Ludwig (2001)
Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues.European journal of biochemistry, 268 6
C. Ulens, J. Tytgat (2001)
Functional Heteromerization of HCN1 and HCN2 Pacemaker Channels*The Journal of Biological Chemistry, 276
U. Kaupp, Reinhard Seifert (2001)
Molecular diversity of pacemaker ion channels.Annual review of physiology, 63
E. Accili, R. Robinson, D. DiFrancesco (1997)
Properties and modulation of If in newborn versus adult cardiac SA node.The American journal of physiology, 272 3 Pt 2
G. Maccaferri, Matteo Mangoni, A. Lazzari, Dario DiFrancesco (1993)
Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells.Journal of neurophysiology, 69 6
H. Yu, J. Wu, I. Potapova, R. Wymore, B. Holmes, J. Zuckerman, Z. Pan, H. Wang, W. Shi, R. Robinson, M. El‐Maghrabi, W. Benjamin, J. Dixon, D. Mckinnon, I. Cohen, R. Wymore (2001)
MinK-Related Peptide 1: A &bgr; Subunit for the HCN Ion Channel Subunit Family Enhances Expression and Speeds ActivationCirculation Research: Journal of the American Heart Association, 88
B. Wainger, M. Degennaro, B. Santoro, S. Siegelbaum, G. Tibbs (2001)
Molecular mechanism of cAMP modulation of HCN pacemaker channelsNature, 411
P. Bois, B. Renaudon, M. Baruscotti, J. Lenfant, D. DiFrancesco (1997)
Activation of f‐channels by cAMP analogues in macropatches from rabbit sino‐atrial node myocytesThe Journal of Physiology, 501
W. Shi, Randy Wymore, Hangang Yu, Jiying Wu, R. Wymore, Z. Pan, R. Robinson, J. Dixon, D. Mckinnon, I. Cohen (1999)
Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues.Circulation research, 85 1
Bina Santoro, Seth Grant, D. Bartsch, Eric Kandel (1997)
Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels.Proceedings of the National Academy of Sciences of the United States of America, 94 26
(1989)
The current If and its contribution to cardiac pacemaking
‘Funny‐’ (f‐) channels of cardiac sino‐atrial node (SAN) cells are key players in the process of pacemaker generation and mediate the modulatory action of autonomic transmitters on heart rate. The molecular components of f‐channels are the hyperpolarization‐activated, cyclic nucleotide‐gated (HCN) channels. Of the four HCN isoforms known, two (HCN4 and HCN1) are expressed in the rabbit SAN at significant levels. However, the properties of f‐channels of SAN cells do not conform to specific features of the two isoforms expressed locally. For example, activation kinetics and cAMP sensitivity of native pacemaker channels are intermediate between those reported for HCN1 and HCN4. Here we have explored the possibility that both HCN4 and HCN1 isoforms contribute to the native If in SAN cells by co‐assembling into heteromeric channels. To this end, we used heterologous expression in human embryonic kidney (HEK) 293 cells to investigate the kinetics and cAMP response of the current generated by co‐transfected (HCN4 + HCN1) and concatenated (HCN4‐HCN1 (4–1) tandem or HCN1‐HCN4 (1–4) tandem) rabbit constructs and compared them with those of the native f‐current from rabbit SAN. 4–1 tandem, but not co‐transfected, currents had activation kinetics approaching those of If; however, the activation range of 4–1 tandem channels was more negative than that of the f‐channel and their cAMP sensitivity were poorer (although that of 1–4 tandem channels was normal). Co‐transfection of 4–1 tandem channels with minK‐related protein 1(MiRP1) did not alter their properties. HCN1 and HCN4 may contribute to native f‐channels, but a ‘context’‐dependent mechanism is also likely to modulate the channel properties in native tissues.
The Journal of Physiology – Wiley
Published: Jun 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.