Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Circular Dichroism Studies of the Structure of DNA Complex with Berberine

Circular Dichroism Studies of the Structure of DNA Complex with Berberine Abstract The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA but depends on the sequence of base pairs. On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300–500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425–440nm and 340–360nm with the maximum varying depending on base composition and sequence of DNA While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biomolecular Structure and Dynamics Taylor & Francis

Circular Dichroism Studies of the Structure of DNA Complex with Berberine

Circular Dichroism Studies of the Structure of DNA Complex with Berberine

Journal of Biomolecular Structure and Dynamics , Volume 9 (1): 19 – Aug 1, 1991

Abstract

Abstract The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA but depends on the sequence of base pairs. On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300–500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425–440nm and 340–360nm with the maximum varying depending on base composition and sequence of DNA While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.

Loading next page...
 
/lp/taylor-francis/circular-dichroism-studies-of-the-structure-of-dna-complex-with-HMJ0EmmfxR

References (53)

Publisher
Taylor & Francis
Copyright
Copyright Taylor & Francis Group, LLC
ISSN
1538-0254
eISSN
0739-1102
DOI
10.1080/07391102.1991.10507893
Publisher site
See Article on Publisher Site

Abstract

Abstract The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA but depends on the sequence of base pairs. On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300–500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425–440nm and 340–360nm with the maximum varying depending on base composition and sequence of DNA While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.

Journal

Journal of Biomolecular Structure and DynamicsTaylor & Francis

Published: Aug 1, 1991

There are no references for this article.