Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Binari, B. Staveley, W. Johnson, R. Godavarti, R. Sasisekharan, A. Manoukian (1997)
Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling.Development, 124 13
Alfonso González, M. Kaya, W. Shi, Howard Song, J. Testa, L. Penn, J. Filmus (1998)
OCI-5/GPC3, a Glypican Encoded by a Gene That Is Mutated in the Simpson-Golabi-Behmel Overgrowth Syndrome, Induces Apoptosis in a Cell Line–specific MannerThe Journal of Cell Biology, 141
V. Kainulainen, H Wang, C. Schick, M. Bernfield (1998)
Syndecans, Heparan Sulfate Proteoglycans, Maintain the Proteolytic Balance of Acute Wound Fluids*The Journal of Biological Chemistry, 273
D. Humphries, G. Wong, D. Friend, M. Gurish, Wen-Tao Qiu, C. Huang, A. Sharpe, R. Stevens (1999)
Heparin is essential for the storage of specific granule proteases in mast cellsNature, 400
R. Sanderson, J. Turnbull, J. Gallagher, A. Lander (1994)
Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior.The Journal of biological chemistry, 269 18
U Haecker, X Lin, N Perrimon (1997)
The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide.Development, 124
G. Pilia, R. Hughes-Benzie, A. MacKenzie, P. Baybayan, E. Chen, R. Huber, G. Neri, A. Cao, A. Forabosco, D. Schlessinger (1996)
Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndromeNature Genetics, 12
R. Rosenberg, Nicholas Shworak, Nicholas Shworak, Jian Liu, J. Schwartz, Lijuan Zhang (1997)
Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated?The Journal of clinical investigation, 99 9
M. Fitzgerald, Zihua Wang, P. Park, G. Murphy, M. Bernfield (2000)
Shedding of Syndecan-1 and -4 Ectodomains Is Regulated by Multiple Signaling Pathways and Mediated by a Timp-3–Sensitive MetalloproteinaseThe Journal of Cell Biology, 148
(1989)
Heparin (CRC
C. Alexander, F. Reichsman, M. Hinkes, J. Lincecum, Klaus Becker, S. Cumberledge, M. Bernfield (2000)
Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in miceNature Genetics, 25
M. Bernfield, R. Kokenyesi, Masatomo Kato, M. Hinkes, J. Spring, R. Gallo, E. Lose (1992)
Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans.Annual review of cell biology, 8
GM Rubin (2000)
Comparative genomics of the eukaryotes.Science , 287
U. Lindahl, M. Kusche‐Gullberg, L. Kjellén (1998)
Regulated Diversity of Heparan Sulfate*The Journal of Biological Chemistry, 273
C. McCormick, Y. Leduc, D. Martindale, Kirsten Mattison, L. Esford, A. Dyer, F. Tufaro (1998)
The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfateNature Genetics, 19
Shari Jackson, H. Nakato, Motoko Sugiura, Alison Jannuzi, Rob Oakes, Vesna Kaluza, C. Golden, S. Selleck (1997)
dally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen, Dpp.Development, 124 20
Yohanns Bellaiche, N. Perrimon, N. Perrimon (1999)
Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan.Molecular cell, 4 4
M. Veugelers, G. David, 克明 小野, 雅之 石原 (1998)
The Glypicans: a Family of GPI-Anchored Heparan Sulfate Proteoglycans with a Potential Role in the Control of Cell DivisionTrends in Glycoscience and Glycotechnology, 10
H. Toyoda, A. Kinoshita-Toyoda, S. Selleck (2000)
Structural Analysis of Glycosaminoglycans inDrosophila and Caenorhabditis elegans and Demonstration That tout-velu, a Drosophila Gene Related to EXT Tumor Suppressors, Affects Heparan Sulfate in Vivo *The Journal of Biological Chemistry, 275
Yohanns Bellaiche, I. The, N. Perrimon (1998)
Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusionNature, 394
U. Häcker, Xinhua Lin, N. Perrimon (1997)
The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis.Development, 124 18
T. Lind, F. Tufaro, C. McCormick, U. Lindahl, K. Lidholt (1998)
The Putative Tumor Suppressors EXT1 and EXT2 Are Glycosyltransferases Required for the Biosynthesis of Heparan Sulfate*The Journal of Biological Chemistry, 273
S. Subramanian, M. Fitzgerald, M. Bernfield (1997)
Regulated Shedding of Syndecan-1 and -4 Ectodomains by Thrombin and Growth Factor Receptor Activation*The Journal of Biological Chemistry, 272
Xinhua Lin, N. Perrimon (1999)
Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signallingNature, 400
(1999)
Evidence that heparan sulfate proteoglycans are involved in the movement of Hedgehog molecules through ®elds of cells
M. Lyon, J. Gallagher (1998)
Bio-specific sequences and domains in heparan sulphate and the regulation of cell growth and adhesion.Matrix biology : journal of the International Society for Matrix Biology, 17 7
H Kitagawa, H Shimakawa, K Sugahara (1999)
The tumor suppressor EXT-like gene EXTL-2 encodes an alpha1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein liknkage region. The key enzyme for the chain initiation of heparan sulfate.J. Biol. Chem., 274
M. Tsuda, K. Kamimura, H. Nakato, Michael Archer, W. Staatz, Bethany Fox, Melanie Humphrey, S. Olson, Tracy Futch, Vesna Kaluza, E. Siegfried, Lynn Stam, S. Selleck (1999)
The cell-surface proteoglycan Dally regulates Wingless signalling in DrosophilaNature, 400
S. Bullock, J. Fletcher, R. Beddington, V. Wilson (1998)
Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase.Genes & development, 12 12
R. Iozzo (1998)
Matrix proteoglycans: from molecular design to cellular function.Annual review of biochemistry, 67
Masato Kato, Huiming Wang, V. Kainulainen, M. Fitzgerald, S. Ledbetter, D. Ornitz, M. Bernfield (1998)
Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2Nature Medicine, 4
H. Nakato, Tracy Futch, S. Selleck (1995)
The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila.Development, 121 11
H. Habuchi, O. Habuchi, K. Kimata (1998)
Biosynthesis of Heparan Sulfate and Heparin How Are the Multifunctional Glycosaminoglycans Built upTrends in Glycoscience and Glycotechnology, 10
V. Nurcombe, Miriam Ford, J. Wildschut, P. Bartlett (1993)
Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan.Science, 260 5104
J. Sen, J. Goltz, L. Stevens, D. Stein (1998)
Spatially Restricted Expression of pipe in the Drosophila Egg Chamber Defines Embryonic Dorsal–Ventral PolarityCell, 95
D. Stickens, G. Clines, D. Burbee, Purita Ramos, Sylvia Thomas, D. Hogue, J. Hecht, M. Lovett, G. Evans (1996)
The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genesNature Genetics, 14
M. Kato, H. Wang, M. Bernfield, J. Gallagher, J. Turnbull (1994)
Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains.The Journal of biological chemistry, 269 29
M. Bernfield, M. Götte, P. Park, O. Reizes, M. Fitzgerald, J. Lincecum, M. Zako (1999)
Functions of cell surface heparan sulfate proteoglycans.Annual review of biochemistry, 68
U Lindahl (1989)
Heparin
E. Forsberg, G. Pejler, M. Ringvall, Carolina Lunderius, B. Tomasini-Johansson, M. Kusche‐Gullberg, Inger Eriksson, J. Ledin, L. Hellman, L. Kjellén (1999)
Abnormal mast cells in mice deficient in a heparin-synthesizing enzymeNature, 400
T. Haerry, T. Heslip, J. Marsh, Michael O’Connor (1997)
Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila.Development, 124 16
K. Cadigan, M. Fish, Eric Rulifson, R. Nusse (1998)
Wingless Repression of Drosophila frizzled 2 Expression Shapes the Wingless Morphogen Gradient in the WingCell, 93
H. Kitagawa, H. Shimakawa, K. Sugahara (1999)
The Tumor Suppressor EXT-like Gene EXTL2 Encodes an α1, 4-N-Acetylhexosaminyltransferase That TransfersN-Acetylgalactosamine and N-Acetylglucosamine to the Common Glycosaminoglycan-Protein Linkage RegionThe Journal of Biological Chemistry, 274
Heparan sulphate proteoglycans are abundant cell-surface molecules that consist of a protein core to which heparan sulphate glycosaminoglycan chains are attached. The functions of these molecules have remained mostly underappreciated by developmental biologists; however, the actions of important signalling molecules, for example Wnt and Hedgehog, depend on them. To understand both the mechanisms by which ligands involved in development interact with their receptors and how morphogens pattern tissues, biologists need to consider the functions of heparan sulphate proteoglycans in signalling and developmental patterning.
Nature – Springer Journals
Published: Apr 13, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.