Access the full text.
Sign up today, get DeepDyve free for 14 days.
I. Marín, C. Lloréns (2000)
Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data.Molecular biology and evolution, 17 7
F. Barré-Sinoussi, J. Chermann, F. Rey, M. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vézinet-Brun, C. Rouzioux, W. Rozenbaum, L. Montagnier (2004)
Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). 1983.Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion, 56 2
C. Lloréns, M. Fares, A. Moya (2008)
Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesisBMC Evolutionary Biology, 8
R. Hull (1999)
Classification of reverse transcribing elements: a discussion documentArchives of Virology, 144
T. Eickbush, Harmit Malik (2002)
Origins and Evolution of Retrotransposons
MICINN) (Torres- Quevedo grants PTQ-09-01-00020, PTQ-09-01-00670 and PTQ-10-03552, partial). Funding for open access charge
Stephen Mount, G. Rubin (1985)
Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteinsMolecular and Cellular Biology, 5
T. Bureau, P. Ronald, S. Wessler (1996)
A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes.Proceedings of the National Academy of Sciences of the United States of America, 93 16
Kiyoshi Mizuuchi (1992)
Transpositional recombination: mechanistic insights from studies of mu and other elements.Annual review of biochemistry, 61
D. Gao, N. Gill, Hyeran Kim, J. Walling, Wenli Zhang, Chuanzhu Fan, Yeisoo Yu, Jianxin Ma, P. SanMiguel, Ning Jiang, Zhukuan Cheng, R. Wing, Jiming Jiang, S. Jackson (2009)
A lineage-specific centromere retrotransposon in Oryza brachyantha.The Plant journal : for cell and molecular biology, 60 5
N. Rawlings, Alan Barrett (1995)
Families of aspartic peptidases, and those of unknown catalytic mechanism.Methods in enzymology, 248
H. Kazazian (2004)
Mobile Elements: Drivers of Genome EvolutionScience, 303
J. Volff, J. Brosius (2007)
Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes.Genome dynamics, 3
S. Eddy (1998)
Profile hidden Markov modelsBioinformatics, 14 9
S. Rosati, M. Pittau, A. Alberti, Sarah Pozzi, Denis York, J. Sharp, M. Palmarini (2000)
An accessory open reading frame (orf-x) of jaagsiekte sheep retrovirus is conserved between different virus isolates.Virus research, 66 1
S. Song, T. Gerasimova, M. Kurkulos, J. Boeke, V. Corces (1994)
An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus.Genes & development, 8 17
D. Wright, D. Voytas (2002)
Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses.Genome research, 12 1
A. Marco, I. Marín (2008)
How Athila retrotransposons survive in the Arabidopsis genomeBMC Genomics, 9
S. Richards, R. Gibbs, N. Gerardo, N. Moran, A. Nakabachi, D. Stern, D. Tagu, Alex Wilson, D. Muzny, C. Kovar, Andrew Cree, J. Chacko, Mimi Chandrabose, M. Dao, H. Dinh, Ramatu Gabisi, S. Hines, J. Hume, Shalini Jhangian, Vandita Joshi, L. Lewis, Yih-shin Liu, John Lopez, M. Morgan, N. Nguyen, Geoffrey Okwuonu, S. Ruiz, J. Santibanez, Rita Wright, G. Fowler, Matthew Hitchens, R. Lozado, C. Moen, David Steffen, J. Warren, Jingkun Zhang, L. Nazareth, Dean Chavez, Clay Davis, Sandy Lee, B. Patel, ling-ling Pu, S. Bell, A. Johnson, Selina Vattathil, Rex Williams, S. Shigenobu, P. Dang, M. Morioka, T. Fukatsu, T. Kudo, S. Miyagishima, Huaiyang Jiang, K. Worley, F. Legeai, J. Gauthier, O. Collin, Lan Zhang, Hsiu-Chuan Chen, O. Ermolaeva, W. Hlavina, Y. Kapustin, B. Kiryutin, P. Kitts, D. Maglott, Terence Murphy, K. Pruitt, V. Sapojnikov, A. Souvorov, F. Thibaud-Nissen, F. Camara, R. Guigó, M. Stanke, V. Solovyev, P. Kosarev, Don Gilbert, T. Gabaldón, J. Huerta-Cepas, M. Marcet-Houben, M. Pignatelli, A. Moya, C. Rispe, Morgane Ollivier, H. Quesneville, Emmanuelle Permal, C. Lloréns, R. Futami, D. Hedges, H. Robertson, T. Alioto, M. Mariotti, N. Nikoh, J. McCutcheon, G. Burke, Alexandra Kamins, A. Latorre, P. Ashton, F. Calevro, H. Charles, S. Colella, A. Douglas, G. Jander, Derek Jones, G. Febvay, L. Kamphuis, P. Kushlan, S. Macdonald, J. Ramsey, J. Schwartz, S. Seah, G. Thomas, A. Vellozo, Bodil Cass, P. Degnan, B. Hurwitz, Teresa Leonardo, R. Koga, B. Altincicek, C. Anselme, H. Atamian, Seth Barribeau, M. Vos, E. Duncan, J. Evans, M. Ghanim, A. Heddi, I. Kaloshian, C. Vincent-Monégat, B. Parker, V. Pérez-Brocal, Y. Rahbé, Chelsea Spragg, J. Tamames, D. Tamarit, C. Tamborindeguy, A. Vilcinskas, R. Bickel, J. Brisson, T. Butts, Chun‐che Chang, O. Christiaens, G. Davis, E. Duncan, D. Ferrier, M. Iga, R. Janssen, Hsiao-ling Lu, A. McGregor, T. Miura, G. Smagghe, James Smith, M. Zee, R. Velarde, M. Wilson, P. Dearden, O. Edwards, K. Gordon, R. Hilgarth, S. Rider, D. Srinivasan, T. Walsh, A. Ishikawa, S. Jaubert-Possamai, B. Fenton, Wenting Huang, Guillaume Rizk, D. Lavenier, J. Nicolas, C. Smadja, Jing-Jiang Zhou, F. Vieira, Xiaoli He, Renhu Liu, J. Rozas, L. Field, P. Campbell, J. Carolan, Carol Fitzroy, K. Reardon, G. Reeck, Karam Singh, T. Wilkinson, J. Huybrechts, M. Abdel-latief, A. Robichon, J. Veenstra, F. Hauser, Giuseppe Cazzamali, Martina Schneider, M. Williamson, Elisabeth Stafflinger, Karina Hansen, C. Grimmelikhuijzen, Daniel Price, M. Caillaud, Eric Fleet, Q. Ren, J. Gatehouse, V. Brault, B. Monsion, Jason Diaz, L. Hunnicutt, H. Ju, Ximo Pechuan, J. Aguilar, T. Cortés, Benjamín Ortiz-Rivas, D. Martínez-Torres, A. Dombrovsky, R. Dale, T. Davies, M. Williamson, Andrew Jones, D. Sattelle, S. Williamson, A. Wolstenholme, Ludovic Cottret, D. Heckel, W. Hunter (2010)
Genome Sequence of the Pea Aphid Acyrthosiphon pisumPLoS Biology, 8
S. Wessler, T. Bureau, S. White (1995)
LTR-retrotransposons and MITEs: important players in the evolution of plant genomes.Current opinion in genetics & development, 5 6
I. Jordan, L. Matyunina, J. McDonald (1999)
Evidence for the recent horizontal transfer of long terminal repeat retrotransposon.Proceedings of the National Academy of Sciences of the United States of America, 96 22
J. Thompson, T. Gibson, F. Plewniak, F. Jeanmougin, D. Higgins (1997)
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic acids research, 25 24
J. Clare, P. Farabaugh (1985)
Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression.Proceedings of the National Academy of Sciences of the United States of America, 82 9
A. Kluge, J. Farris (1969)
Quantitative Phyletics and the Evolution of AnuransSystematic Biology, 18
(2009)
Network dynamics of eukaryotic LTR retroelements beyond phylogenetic treesBiol. Direct., 4
R. Britten (1995)
Active gypsy/Ty3 retrotransposons or retroviruses in Caenorhabditis elegans.Proceedings of the National Academy of Sciences of the United States of America, 92
C. Lloréns, R. Futami, D. Bezemer, A. Moya (2007)
The Gypsy Database (GyDB) of mobile genetic elementsNucleic Acids Research, 36
(1999)
Metaviridae. In Murphy,F.A. (ed), Virus Taxonomy
J. Levy, J. Shimabukuro (1985)
Recovery of AIDS-associated retroviruses from patients with AIDS or AIDS-related conditions and from clinically healthy individuals.The Journal of infectious diseases, 152 4
B. Mcclintock (1951)
Mutable Loci in Maize
B. Poiesz, F. Ruscetti, A. Gazdar, P. Bunn, J. Minna, R. Gallo (1980)
Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphomaProceedings of the National Academy of Sciences, 77
M. Sommerfelt, R. Weiss (1990)
Receptor interference groups of 20 retroviruses plating on human cells.Virology, 176 1
S. Chatterjee, E. Hunter (1980)
Fusion of normal primate cells: a common biological property of the D-type retroviruses.Virology, 107 1
M. Kimmel, N. Braun, R. Bosch (2010)
Conflict of interest statement. None declared.
Harmit Malik, T. Eickbush (1999)
Modular Evolution of the Integrase Domain in the Ty3/Gypsy Class of LTR RetrotransposonsJournal of Virology, 73
M. Yoshida, I. Miyoshi, Y. Hinuma (1982)
Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease.Proceedings of the National Academy of Sciences of the United States of America, 79 6
R. Gifford, P. Kabát, Joanne Martin, C. Lynch, M. Tristem (2005)
Evolution and Distribution of Class II-Related Endogenous RetrovirusesJournal of Virology, 79
C. Fauquet, Mayo, J. Maniloff, U. Desselberger, L. Ball (2005)
Virus taxonomy : eighth report of the International Committee on Taxonomy of Viruses
Y. Xiong, T. Eickbush (1990)
Origin and evolution of retroelements based upon their reverse transcriptase sequences.The EMBO Journal, 9
N. Saitou, M. Nei (1987)
The neighbor-joining method: a new method for reconstructing phylogenetic trees.Molecular biology and evolution, 4 4
G. Hurst, M. Schilthuizen (1998)
Selfish genetic elements and speciationHeredity, 80
(2007)
Making the Money Work
T. Goodwin, R. Poulter (2002)
A group of deuterostome Ty3/gypsy-like retrotransposons with Ty1/copia-like pol-domain ordersMolecular Genetics and Genomics, 267
R. Gallo, S. Salahuddin, M. Popovič, G. Shearer, M. Kaplan, B. Haynes, T. Palker, R. Redfield, J. Oleske, B. Safai (1984)
Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS.Science, 224 4648
Identification and Characterization of Two Closely Related Unclassifiable Endogenous Retroviruses in Pythons ( Python molurus and Python curtus )
(1999)
Virus taxonomy , the universal system of virus taxonomy , updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998
Y. Bae, J. Ahn, Seon-Hee Kim, M. Rhyu, Y. Kong, S. Cho (2008)
PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidyBMC Genomics, 9
Johannes Simons (2009)
Epigenetic hereditary transcription profiles III, evidence for an epigenetic network resulting in gender, tissue and age-specific variation in overall transcriptionBiology Direct, 4
Harmit Malik, T. Eickbush (2001)
Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses.Genome research, 11 7
Carlos Llorens, Ignacio Marín (2001)
A mammalian gene evolved from the integrase domain of an LTR retrotransposon.Molecular biology and evolution, 18 8
A. Gottlieb, L. Poggio (2010)
Genomic screening in dioecious “yerba mate” tree (Ilex paraguariensis A. St. Hill., Aquifoliaceae) through representational difference analysisGenetica, 138
(2008)
Phylograph: a multifunction Java editor for handling phylogenetic trees
D. Wilkinson, D. Mager, J. Leong (1994)
Endogenous Human Retroviruses
(2009)
GenBankNucleic Acids Res., 37
O. Piskurek, Hidenori Nishihara, N. Okada (2009)
The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis.Gene, 441 1-2
E. Koonin, A. Mushegian, E. Ryabov, V. Dolja (1991)
Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity.The Journal of general virology, 72 ( Pt 12)
B. Gorinšek, F. Gubensek, D. Kordis (2004)
Evolutionary genomics of chromoviruses in eukaryotes.Molecular biology and evolution, 21 5
Jirong Bai, Jeanette Bishop, Jonathan Carlson, J. Demartini (1999)
Sequence comparison of JSRV with endogenous proviruses: envelope genotypes and a novel ORF with similarity to a G-protein-coupled receptor.Virology, 258 2
Eugene Gladyshev, M. Meselson, I. Arkhipova (2007)
A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers.Gene, 390 1-2
J. Jurka, V. Kapitonov, A. Pavlícek, P. Klonowski, O. Kohany, J. Walichiewicz (2005)
Repbase Update, a database of eukaryotic repetitive elementsCytogenetic and Genome Research, 110
C. Lloréns, R. Futami, Gabriel Renaud, A. Moya (2009)
Bioinformatic flowchart and database to investigate the origins and diversity of Clan AA peptidasesBiology Direct, 4
J. Volff, H. Lehrach, R. Reinhardt, D. Chourrout (2004)
Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica.Molecular biology and evolution, 21 11
(2009)
The GyDB Collection of Viral and Mobile Genetic Element ModelsBiotechvana Bioinformatics
(2005)
Virus Taxonomy, VIIIth Report of the ICTV
A. Flavell (1999)
Long terminal repeat retrotransposons jump between species.Proceedings of the National Academy of Sciences of the United States of America, 96 22
A. Kim, C. Terzian, P. Santamaria, Alain PtLISSON, N. Prud’homme, Alain BUCHETONt (1994)
Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster.Proceedings of the National Academy of Sciences of the United States of America, 91
Y. Bae, S. Moon, Y. Kong, S. Cho, M. Rhyu (2001)
CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons.Molecular biology and evolution, 18 8
H. Quesneville, C. Bergman, O. Andrieu, D. Autard, D. Nouaud, M. Ashburner, D. Anxolabéhère (2005)
Combined Evidence Annotation of Transposable Elements in Genome SequencesPLoS Computational Biology, 1
A. Pantazidis, M. Labrador, A. Fontdevila (1999)
The retrotransposon Osvaldo from Drosophila buzzatii displays all structural features of a functional retrovirus.Molecular biology and evolution, 16 7
R. Leplae, A. Hebrant, S. Wodak, A. Toussaint (2004)
ACLAME: A CLAssification of Mobile genetic ElementsNucleic acids research, 32 Database issue
Jan Gründemann, Falk Schlaudraff, O. Haeckel, B. Liss (2008)
Elevated α-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's diseaseNucleic Acids Research, 36
Laurence Pearl, T. Blundell (1991)
The active site of aspartic proteinasesFEBS Letters, 174
P. Sonigo, C. Barker, E. Hunter, S. Wain-Hobson (1986)
Nucleotide sequence of Mason-Pfizer monkey virus: An immunosuppressive D-type retrovirusCell, 45
T. Margush, F. McMorris (1981)
Consensusn-treesBulletin of Mathematical Biology, 43
E. Lerat, F. Brunet, C. Bazin, P. Capy (2004)
Is the evolution of transposable elements modular?Genetica, 107
N. Craig, M. Chandler, M. Gellert, A. Lambowitz, P. Rice, S. Sandmeyer (2002)
Mobile DNA III
J. Elder, D. Lerner, C. Hasselkus-Light, Darrell Fontenot, Eleanor Hunter, P. Luciw, R. Montelaro, T. Phillips (1992)
Distinct subsets of retroviruses encode dUTPaseJournal of Virology, 66
D. Wright, D. Voytas (1998)
Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.Genetics, 149 2
(2009)
GenBank. Nucleic Acids Res
K. Saigo, W. Kugimiya, Y. Matsuo, S. Inouye, K. Yoshioka, S. Yuki (1984)
Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogasterNature, 312
(2009)
European Regional Development Fund (ERDF)
O. Novikova, V. Mayorov, G. Smyshlyaev, M. Fursov, L. Adkison, O. Pisarenko, A. Blinov (2008)
Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta).The Plant journal : for cell and molecular biology, 56 4
Nathalia Setta, M. Sluys, P. Capy, Claudia Carareto (2009)
Multiple invasions of Gypsy and Micropia retroelements in genus Zaprionus and melanogaster subgroup of the genus DrosophilaBMC Evolutionary Biology, 9
P Herron (2004)
Mobile DNA IIHeredity, 92
S. Altschul, Thomas Madden, A. Schäffer, Jinghui Zhang, Zheng Zhang, W. Miller, D. Lipman (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic acids research, 25 17
M. Bousalem, E. Douzery, S. Seal (2008)
Taxonomy, molecular phylogeny and evolution of plant reverse transcribing viruses (family Caulimoviridae) inferred from full-length genome and reverse transcriptase sequencesArchives of Virology, 153
R. Gifford, M. Tristem (2003)
The Evolution, Distribution and Diversity of Endogenous RetrovirusesVirus Genes, 26
Nathan Bowen, John McDonald (1999)
Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements.Genome research, 9 10
A. King, M. Adams, E. Carstens, E. Lefkowitz (2012)
Virus taxonomy: classification and nomenclature of viruses
E. Koonin, Shubo Zhou, J. Lucchesi (1995)
The chromo superfamily: new members, duplication of the chromo domain and possible role in delivering transcription regulators to chromatin.Nucleic acids research, 23 21
M. Chang, M. Dayhoff, R. Eck, M. Sochard (1965)
Atlas of protein sequence and structure
International Consortium (2001)
Initial sequencing and analysis of the human genomeNature, 409
A. Rambaut, D. Posada, K. Crandall, E. Holmes (2004)
The causes and consequences of HIV evolutionNature Reviews Genetics, 5
(1997)
Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
J. Llorens, Jonathan Clark, I. Martinez-Garay, Sirena Soriano, R. Frutos, M. Martínez-Sebastián (2008)
Gypsy endogenous retrovirus maintains potential infectivity in several species of DrosophilidsBMC Evolutionary Biology, 8
Neil Rawlings, Alan Barrett, Alex Bateman (2009)
MEROPS: the peptidase databaseNucleic Acids Research, 38
M. Lynch, J. Conery (2003)
The Origins of Genome ComplexityScience, 302
H. Temin (1989)
Reverse transcriptases. Retrons in bacteria.Nature, 339 6222
Florian Maumus, A. Allen, C. Mhiri, Hanhua Hu, K. Jabbari, A. Vardi, M. Grandbastien, C. Bowler (2009)
Potential impact of stress activated retrotransposons on genome evolution in a marine diatomBMC Genomics, 10
C. Edwards, S. Edwards, Rej-Paul Bhumbra, T. Chowdhury (2003)
Severe Refractory Hypercalcaemia in HTLV-1 InfectionJournal of the Royal Society of Medicine, 96
D70–D74 Nucleic Acids Research, 2011, Vol. 39, Database issue Published online 29 October 2010 doi:10.1093/nar/gkq1061 The Gypsy Database (GyDB) of mobile genetic elements: release 2.0 1, 1 1 1 Carlos Llorens *, Ricardo Futami , Laura Covelli , Laura Domı´nguez-Escriba ´ , 1 2 2 3 Jose M. Viu , Daniel Tamarit , Jose Aguilar-Rodrı´guez , Miguel Vicente-Ripolles , 1 1,4 5 1,3 Gonzalo Fuster , Guillermo P. Bernet , Florian Maumus , Alfonso Munoz-Pomer , 3 2,6 2,6 Jose M. Sempere , Amparo Latorre and Andres Moya Biotechvana, Parc Cientı´fic, Universitat de Vale` ncia, Calle Catedra´ tico Jose´ Beltra´ n 2, 46980 Paterna (Vale` ncia), Unidad Mixta de Investigacio´ n en Geno´ mica y Salud del Centro Superior de Investigacio´ n en Salud Pu´ blica (CSISP)-Universitat de Vale` ncia (Instituto Cavanilles de Biodiversidad y Biologı´a Evolutiva), Avenida de ` ´ ´ Catalun˜ a 21, 46020 Valencia, Departamento de Sistemas Informaticos y Computacion (DSIC), Universitat ` ` ` Politecnica de Valencia, Camino de Vera S/N, 46022 Valencia, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Naquera, Km 4.5, 46113, Moncada (Valencia), Spain, Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Route de Saint-Cyr, 78026 Versailles, France and CIBER en Epidemiologia ´ ` y Salud Publica (CIBEResp), Parc de Recerca Biomedica de Barcelona, Calle Doctor Aiguader 88 1 Planta, 8003 Barcelona, Spain Received September 2, 2010; Revised October 11, 2010; Accepted October 13, 2010 ABSTRACT hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq This article introduces the second release of databases and BLAST and HMM servers to facilitate the Gypsy Database of Mobile Genetic Elements sequence characterization of new LTR retroelement (GyDB 2.0): a research project devoted to the evolu- and caulimovirus queries; and (v) a bibliographic tionary dynamics of viruses and transposable server. GyDB 2.0 is available at http://gydb.org. elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is INTRODUCTION continuously progressing, and that owing to the Mobile genetic elements (MGEs) are ubiquitous, autono- high molecular diversity of mobile elements mous genetic units that often constitute a significant part requires to be completed in several stages. GyDB of their host genomes. It is commonly accepted that 2.0 has been powered with a wiki to allow other mobile DNA elements are powerful vectors for disease researchers participate in the project. The current and evolution, from which distinct host genes have evolved during the history of life (1,2). The emergence database stage and scope are long terminal and subsequent role played by viruses and MGEs in the repeats (LTR) retroelements and relatives. GyDB history of life is an exciting topic that requires further 2.0 is an update based on the analysis of Ty3/ investigation. In this respect, researchers aim to discern Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR relevant aspects of the molecular changes responsible for retroelements and the Caulimoviridae pararetro- various characteristics in organisms related to horizontal viruses of plants. Among other features, in terms transfer, infection and disease. Among the distinct of the aforementioned topics, this update adds: initiatives launched with the aim of investigating the (i) a variety of descriptions and reviews distributed diversity of MGEs (see for example 3–5) was the Gypsy in multiple web pages; (ii) protein-based Database (GyDB) of MGEs (6), a research project phylogenies, where phylogenetic levels are devoted to the evolutionary dynamics of viruses and MGEs (and their related host proteins), which was assigned to distinct classified elements; (iii) a launched in 2008. The GyDB project is a highly collection of multiple alignments, lineage-specific *To whom correspondence should be addressed. Tel: + 34 963 544 993; Email: [email protected] The Author(s) 2010. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Research, 2011, Vol. 39, Database issue D71 informative database established within an evolutionary THE UPDATE: NEW FEATURES context of classification, where one piece of research GyDB 2.0 consists of 1234 web pages addressing the delivers one conclusion that drives individuals towards phylogenetic study of Ty3/Gypsy, Retroviridae, Ty1/ another goal. The most captivating aspect of this project Copia and Bel/Pao LTR retroelement. Caulimoviruses is that a share of our efforts are dedicated to the interpret- (Caulimoviridae) are formally plant DNA ation of analyses, paying particular attention to non- pararetroviruses, but they were considered in GyDB 2.0 redundant elements displaying a certain degree of owing to their relationship with LTR retroelements based distance and investigating how they can be collectively on the common gag/coat and pol regions [for more details, aligned or related, in terms of protein domain architec- see (7) and references therein]. Table 1 summarizes the ture, with other lineages and elements. Because of the topics addressed in this update, as well as the servers impressive molecular diversity of viruses and MGEs, the and database sections it offers. The sequences on which GyDB is a long-term project that has been arranged in a GyDB 2.0 is based were retrieved from GenBank (8) and database in continuous progression, and must be achieved the methodologies employed were the same as those in stages. The current database stage and scope is described earlier in references (6,7,9). At GyDB we retroviruses and retrotransposons with long terminal evaluate the phylogenetic signal of classified distinct repeats (LTR retroelements) and their relatives. elements and create hidden Markov model (HMMs) Following the outline of the earlier release (the study of profiles (10) per lineage and protein domain. In Ty3/Gypsy and Retroviridae LTR retroelements), this addition, the project is concerned with the evolutionary article presents the GyDB update based on the phylogen- relationships between MGEs and their host genomes, etic evaluation of the most representative LTR retroele- based on the analysis of common protein families. In ment families and the plant caulimoviruses. This update, this regard, GyDB 2.0 focuses on two protein called GyDB 2.0, is available at http://gydb.org and superfamilies including protein products commonly includes sequence phylogenetic classification in addition encoded by LTR retroelements and their host genomes; to significant bioinformatic improvements. In particular, the new infrastructure implements a wiki management the chromodomain superfamily (11) and clan AA of system constructed with the aim of promoting a aspartic peptidases (12,13). This second release is world-wide community of researchers collaborating in accompanied by bibliographic data-mining from the analysis and classification of MGEs and viruses PubMed databases hosted at the National Center for inhabiting (or circulating in) living organisms. Biotechnology Information (NCBI, http://www.ncbi.nlm. Table 1. GyDB 2.0 new features: topics and contents Systems Families Lineages Elements Protein domains Accessory proteins LTRs LTR retroelements Ty3/Gypsy 34 96 8 1 Yes LTR retroelements Ty1/Copia 19 69 8 – Yes LTR retroelements Retroviridae 8 50 8 41 Yes LTR retroelements Bel/Pao 5 23 7 – Yes LTR retroelements Caulimoviridae 630 10 27 No Related families Clan AA 35 323 1 – No Related families Chromodomains 2 123 1 – No Topics Sections Availability Systematics 9 Side menu Domains 14 Side menu Database 8 Side menu Servers 3 Top menu: BLAST, HMM, Literature Wiki tools and utilities 3 Top menu Databases Items Sections Genomes (full-length genomes) 271 sequences BLAST search and RefSeq DBs LTRs (nucleotide sequences) 413 sequences BLAST search and RefSeq DBs Cores (protein cores sequences) 1895 sequences BLAST search and RefSeq DBs HMMs 314 HMM profiles HMM search and GyDB collection Multiple alignments 131 alignments GyDB collection Consensus sequences 314 MRC sequences GyDB collection Phylogenetic trees 70 trees Phylogenies Clan AA ancestral reconstruction 70 alignments CAARD database Literature 100797 references Literature server We included caulimoviruses in the second release in view of their relationship with LTR retroelements based on the common gag/coat and pol region. D72 Nucleic Acids Research, 2011, Vol. 39, Database issue nih.gov/) to document up to date information regarding major menus––a top menu and a side menu. The top menu the distinct classified elements. allows access to the three servers: (i) BLAST server; implements a BLAST search powered by the NCBI BLAST package (14), DATABASE ORGANIZATION allowing protein and DNA comparisons with the GENOMES, LTRs and CORES databases. These GyDB 2.0 is deployed over a Linux-MySQL-Apache-PHP databases collect the full-length genomes, the LTR (LAMP) stack, with additional Ajax programming to sequences and all the protein sequences on which minimize server responses to client browsers. The design the second release is based, respectively. is similar to that of the previous release but implements (ii) HMM server; implements HMMER3 package various changes on the web interface. As shown in (http://hmmer.janelia.org) and allows protein Figure 1, the database organization is founded upon two Figure 1. GyDB 2.0 organization and implementation. Nucleic Acids Research, 2011, Vol. 39, Database issue D73 comparisons against a database of protein domain FUTURE PERSPECTIVES lineage-specific HMM profiles created based on the Sequencing projects constantly deliver new types of MGEs update. This server provides additional comparisons [for example (17–22)]; hence the classification of non- between HMM profiles and the aforementioned redundant elements based on their phylogenetic signal is CORES database. an open issue at GyDB, and results in the preparation of (iii) LITERATURE server; allows users to search new sections. For example, we are committed to improv- bibliography of interest in the topic. ing the understanding of the diversity and evolutionary dynamics of MGEs in eukaryotic and prokaryotic organ- An additional new tool in GyDB 2.0 is its wiki, powered isms. In this regard of eukaryotic LTR retroelements (the by the MediaWiki content management system (http:// current database scope), the sequence repertoire at GyDB www.mediawiki.org/). This tool has been implemented with representative elements retrieved from recently to allow other users participate in the project by editing sequenced marine secondary endosymbionts including or creating topics. Accession to this wiki is free but it the brown alga Ectocarpus siliculosus (heterokont) and requires a subscription (registration). The rationale the coccolithophore Emiliania huxleyi (haptophyte) will behind this choice is that edits are registered by date and be implemented. In terms of other research topics in author in order to credit contributions, and secondly, we preparation, one concerns the construction of a server have programmed a revision mechanism to review all devoted to the study of the complete set of MGEs and changes constructively before making them public. The repeats (the mobilome) of biological genomes. This top menu includes three sections to log in and manage server will be introduced with two forthcoming publica- the distinct wiki resources. Finally, to the right of the tions focusing on the LTR retroelements and their related top menu, GyDB 2.0 includes a text field to search the transposases of the pea aphid Acyrthosiphon pisum whole project under two modes (detailed in Figure 1). genome [see (23)]. At the technical level, we are exploring The side menu divides the distinct GyDB sections into the application of formal grammars and machine learning three major demarcations (emphasized with boxes in algorithms to automate, as far as possible, the manage- Figure 1). The first collects sections associated with the ment and classification of the sequence data. We are also systematics applied at GyDB. The second implements in- committed to developing solutions for other non-trivial formation concerning the domains typically observed in difficulties that arise with the growing size of the the genomic structure of the elements we classify. The databases. Viruses and MGEs usually show different third demarcation offers free access to distinct databases, rates of evolution and high variability depending on the which are organized into three sections: evaluated protein or region. Therefore, we aim to implement more than one method of phylogenetic recon- (i) Trees and Networks; consists of the collection of struction to offer the user different perspectives based on inferred phylogenetic trees based on distinct different methods (or the opportunity to upload updated protein domains encoded by the classified phylogenies via the wiki). On the other hand, the trad- elements, or based on their concatenation (when itional view of the origin and evolution of biological they are parts of polyproteins). Remarkably, systems is that they are usually monophyletic, but such inferred pol polyprotein phylogenies based on the an assumption has been challenged by increasing concatenation of the protease, reverse transcriptase, evidence suggesting that natural evolution can frequently RNaseH and integrase domains, are the major cri- proceed by gradual and vertical means, in addition to terion for assigning phylogenetic levels at GyDB 2.0 distinct modular, saltatory and reticulate events (24–36). [results introduced in (7)]. Phylogenetic trees In this respect, we are investigating appropriate protocols provide links to the corresponding element page at to combine phylogenetic inference with new tendencies in GyDB 2.0. By clicking any element name in any tree network biology [see also (7)]. an entry assigned to this element is opened. These tree image maps were created using Phylograph 1.0 (15). This section includes the clan AA reference ACKNOWLEDGEMENTS database (CAARD) of ancestral maximum likeli- We thank all the colleagues detailed in the list available at hood (ML) reconstructions (13) that has been (http://gydb.org/index.php/Acknowledgments) for their implemented and maintained at GyDB. support in contributing images of biological host organ- (ii) GyDB collection (16) or the repository of multiple isms. We are also grateful to Senior NAR Editor alignments, HMMs, and majority rule consensus Dr Michael Galperin and to the two anonymous reviewers (MRC) sequences offered at GyDB 2.0. When a for their constructive comments in improving this article. deposited alignment, profile or MRC sequence is Finally we also thank Denys Wheatley and Angela associated with a journal publication, its entry in Panther from Biomedes for copyediting of this article. the collection includes citation information. (iii) REF SEQ DATABASES or the repository for downloading the databases (GENOMES, CORES FUNDING and LTRs) implemented in the BLAST server. Centro de Desarrollo Tecnolo´ gico Industrial (CDTI) Finally, a variety of links to other database initiatives (grant IDI-20100007, partial); Empresa Nacional de relevant to the topic are included in the side menu. Innovacio´ n, S.A (ENISA) (17092008, partial); IMPIVA D74 Nucleic Acids Research, 2011, Vol. 39, Database issue 18. Novikova,O., Mayorov,V., Smyshlyaev,G., Fursov,M., (IMIDTA/2009/118 and IMDTA/2010/740, partial); Adkison,L., Pisarenko,O. and Blinov,A. (2008) Novel clades of European Regional Development Fund (ERDF); chromodomain-containing Gypsy LTR retrotransposons from Ministerio de Ciencia e Innovacio´ n (MICINN) (Torres- mosses (Bryophyta). Plant J., 56, 562–574. Quevedo grants PTQ-09-01-00020, PTQ-09-01-00670 and 19. Bae,Y.A., Ahn,J.S., Kim,S.H., Rhyu,M.G., Kong,Y. and Cho,S.Y. (2008) PwRn1, a novel Ty3/gypsy-like retrotransposon PTQ-10-03552, partial). Funding for open access charge: of Paragonimus westermani: molecular characters and its University of Valencia. differentially preserved mobile potential according to host chromosomal polyploidy. BMC. Genomics, 9, 482. Conflict of interest statement. None declared. 20. Gao,D., Gill,N., Kim,H.R., Walling,J.G., Zhang,W., Fan,C., Yu,Y., Ma,J., SanMiguel,P., Jiang,N. et al. (2009) A lineage-specific centromere retrotransposon in Oryza brachyantha. REFERENCES Plant J., 60, 820–831. 21. Gottlieb,A.M. and Poggio,L. (2010) Genomic screening in 1. Hurst,G.D.D. and Schilthuizen,M. (1998) Selfish genetic elements dioecious ‘‘yerba mate’’ tree (Ilex paraguariensis A. St. Hill., and speciation. Heredity, 80, 2–8. Aquifoliaceae) through representational difference analysis. 2. Volff,J.N. and Brosius,J. (2007) Modern genomes with retro-look: Genetica, 138, 567–578. retrotransposed elements, retroposition and the origin of new 22. Maumus,F., Allen,A.E., Mhiri,C., Hu,H., Jabbari,K., Vardi,A., genes. Genome Dyn., 3, 175–190. Grandbastien,M.A. and Bowler,C. (2009) Potential impact of 3. Fauquet,C.M., Mayo,M.A., Desselberger,U. and Ball,L.A. (2005) stress activated retrotransposons on genome evolution in a marine Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic diatom. BMC Genomics, 10, 624. Press, London. 23. The International Aphid Genomics Consortium. (2010) Genome 4. Jurka,J., Kapitonov,V.V., Pavlicek,A., Klonowski,P., Kohany,O. sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol., 8, and Walichiewicz,J. (2005) Repbase Update, a database of e1000313. eukaryotic repetitive elements. Cytogenet. Genome Res., 110, 24. Malik,H.S. and Eickbush,T.H. (1999) Modular evolution of the 462–467. integrase domain in the Ty3/Gypsy class of LTR 5. Leplae,R., Hebrant,A., Wodak,S.J. and Toussaint,A. (2004) retrotransposons. J. Virol., 73, 5186–5190. ACLAME: a CLAssification of Mobile genetic Elements. 25. Lerat,E., Brunet,F., Bazin,C. and Capy,P. (1999) Is the evolution Nucleic Acids Res., 32, D45–D49. of transposable elements modular? Genetica, 107, 15–25. 6. Llorens,C., Futami,R., Bezemer,D. and Moya,A. (2008) The 26. Goodwin,T.J. and Poulter,R.T. (2002) A group of deuterostome Gypsy Database (GyDB) of mobile genetic elements. Ty3/ gypsy-like retrotransposons with Ty1/ copia-like pol-domain Nucleic Acids Res., 36, 38–46. orders. Mol. Genet. Genomics, 267, 481–491. 7. Llorens,C., Munoz-Pomer,A., Bernad,L., Botella,H. and Moya,A. 27. Eickbush,T.H. and Malik,H.S. (2002) Origin and evolution of (2009) Network dynamics of eukaryotic LTR retroelements retrotransposons. In Craig,N.L., Craigie,R., Gellert,M. and beyond phylogenetic trees. Biol. Direct., 4, 41. Lambowitz,A.M. (eds), Mobile DNA II. ASM Press, Washington 8. Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J. and DC, pp. 1111–1144. Sayers,E.W. (2009) GenBank. Nucleic Acids Res., 37, D26–D31. 28. Malik,H.S. and Eickbush,T.H. (2001) Phylogenetic analysis of 9. Llorens,C., Fares,M.A. and Moya,A. (2008) Relationships of ribonuclease H domains suggests a late, chimeric origin of LTR Gag–pol diversity between Ty3/Gypsy and Retroviridae LTR retrotransposable elements and retroviruses. Genome Res., 11, retroelements and the three kings hypothesis. BMC Evol. Biol., 8, 1187–1197. 29. Marco,A. and Marin,I. (2008) How Athila retrotransposons 10. Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics, survive in the Arabidopsis genome. BMC. Genomics, 9, 219. 14, 755–763. 30. Rambaut,A., Posada,D., Crandall,K.A. and Holmes,E.C. (2004) 11. Koonin,E.V., Zhou,S. and Lucchesi,J.C. (1995) The chromo The causes and consequences of HIV evolution. Nat. Rev. Genet., superfamily: new members, duplication of the chromo domain 5, 52–61. and possible role in delivering transcription regulators to 31. Flavell,A.J. (1999) Long terminal repeat retrotransposons jump chromatin. Nucleic Acids Res., 23, 4229–4233. between species. Proc. Natl Acad. Sci. USA, 96, 12211–12212. 12. Rawlings,N.D., Barrett,A.J. and Bateman,A. (2010) MEROPS: 32. Jordan,I.K., Matyunina,L.V. and McDonald,J.F. (1999) Evidence the peptidase database. Nucleic Acids Res., 38, D227–D233. for the recent horizontal transfer of long terminal repeat 13. Llorens,C., Futami,R., Renaud,G. and Moya,A. (2009) retrotransposon. Proc. Natl Acad. Sci. USA, 96, 12621–12625. Bioinformatic flowchart and database to investigate the origins 33. Bousalem,M., Douzery,E.J. and Seal,S.E. (2008) Taxonomy, and diversity of Clan AA peptidases. Biol. Direct., 4,3. molecular phylogeny and evolution of plant reverse transcribing 14. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., viruses (family Caulimoviridae) inferred from full-length genome Miller,W. and Lipman,D.J. (1997) Gapped BLAST and and reverse transcriptase sequences. Arch. Virol., 153, 1085–1102. PSI-BLAST: a new generation of protein database search 34. Koonin,E.V., Mushegian,A.R., Ryabov,E.V. and Dolja,V.V. programs. Nucleic Acids Res., 25, 3389–3402. (1991) Diverse groups of plant RNA and DNA viruses share 15. Llorens,C., Futami,R., Vicente-Ripolles,M. and Moya,A. (2008) related movement proteins that may possess chaperone-like Phylograph: a multifunction Java editor for handling phylogenetic activity. J. Gen. Virol., 72(Pt 12), 2895–2903. trees. Biotechvana Bioinformatics, Biotechvana, Valencia, SOFT: 35. Llorens,J.V., Clark,J.B., Martinez-Garay,I., Soriano,S., Phylograph. deFrutos,R. and Martinez-Sebastian,M.J. (2008) Gypsy 16. Llorens,C., Mun˜ oz-Pomer,A., Futami,R. and Moya,A. (2009) The endogenous retrovirus maintains potential infectivity in several GyDB Collection of Viral and Mobile Genetic Element Models. species of Drosophilids. BMC Evol. Biol., 8, 302. Biotechvana Bioinformatics, Biotechvana, Valencia, CR: GyDB 36. de Setta,N., Van Sluys,M.A., Capy,P. and Carareto,C.M. (2009) Collection. Multiple invasions of Gypsy and Micropia retroelements in genus 17. Piskurek,O., Nishihara,H. and Okada,N. (2008) The evolution of Zaprionus and melanogaster subgroup of the genus Drosophila. two partner LINE/SINE families and a full-length BMC Evol. Biol., 9, 279. chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene, 441, 111–118.
Nucleic Acids Research – Oxford University Press
Published: Jan 29, 2011
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.