Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/Calcium Carbonate Composites

Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/Calcium... <jats:p>Poly (lactic acid) (PLA), a biodegradable polyester, derived from renewable resources has been widely used in biomedical and packaging applications. However, the shortcomings for using PLA including its processing instability, low melt viscosity and low flexibility limited its applications. To overcome these shortcomings, poly (butylene adipate-co-terephthalate) (PBAT) was blended with PLA to improve ductility of PLA. However, PLA and PBAT are incompatible. Maleic anhydride grafted PLA (PLA-g-MA) was used to enhance the compatibility of the blends. Moreover, the blend of PLA and PBAT exhibited higher elongation at break but lower tensile strength and Young’s modulus than the pure PLA due to the addition of a ductile phase. Therefore, the addition of calcium carbonate (CaCO3) to PLA/PBAT blends led to achieve balanced properties of the blends. In this study, PLA/PBAT blends and PLA/PBAT/CaCO3 composites were prepared by an internal mixer. PLA-g-MA was as a compatibilizer. Mechanical properties and rheological properties of the blend and composites were investigated. In addition, morphologies of PLA/PBAT blend and their composites were observed by a scanning electron microscope (SEM). The incorporation of PBAT gave rise to remarkable improvement in elongation at break and impact strength of PLA. Tensile strength of PLA/PBAT blend was enhanced by adding PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased while tensile strength and elongation at break decreased.</jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Research CrossRef

Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/Calcium Carbonate Composites

Advanced Materials Research , Volume 123-125: 193-196 – Aug 1, 2010

Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/Calcium Carbonate Composites


Abstract

<jats:p>Poly (lactic acid) (PLA), a biodegradable polyester, derived from renewable resources has been widely used in biomedical and packaging applications. However, the shortcomings for using PLA including its processing instability, low melt viscosity and low flexibility limited its applications. To overcome these shortcomings, poly (butylene adipate-co-terephthalate) (PBAT) was blended with PLA to improve ductility of PLA. However, PLA and PBAT are incompatible. Maleic anhydride grafted PLA (PLA-g-MA) was used to enhance the compatibility of the blends. Moreover, the blend of PLA and PBAT exhibited higher elongation at break but lower tensile strength and Young’s modulus than the pure PLA due to the addition of a ductile phase. Therefore, the addition of calcium carbonate (CaCO3) to PLA/PBAT blends led to achieve balanced properties of the blends. In this study, PLA/PBAT blends and PLA/PBAT/CaCO3 composites were prepared by an internal mixer. PLA-g-MA was as a compatibilizer. Mechanical properties and rheological properties of the blend and composites were investigated. In addition, morphologies of PLA/PBAT blend and their composites were observed by a scanning electron microscope (SEM). The incorporation of PBAT gave rise to remarkable improvement in elongation at break and impact strength of PLA. Tensile strength of PLA/PBAT blend was enhanced by adding PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased while tensile strength and elongation at break decreased.</jats:p>

Loading next page...
 
/lp/crossref/properties-of-biodegradable-poly-lactic-acid-poly-butylene-adipate-co-Gtum6xUkYK

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
1662-8985
DOI
10.4028/www.scientific.net/amr.123-125.193
Publisher site
See Article on Publisher Site

Abstract

<jats:p>Poly (lactic acid) (PLA), a biodegradable polyester, derived from renewable resources has been widely used in biomedical and packaging applications. However, the shortcomings for using PLA including its processing instability, low melt viscosity and low flexibility limited its applications. To overcome these shortcomings, poly (butylene adipate-co-terephthalate) (PBAT) was blended with PLA to improve ductility of PLA. However, PLA and PBAT are incompatible. Maleic anhydride grafted PLA (PLA-g-MA) was used to enhance the compatibility of the blends. Moreover, the blend of PLA and PBAT exhibited higher elongation at break but lower tensile strength and Young’s modulus than the pure PLA due to the addition of a ductile phase. Therefore, the addition of calcium carbonate (CaCO3) to PLA/PBAT blends led to achieve balanced properties of the blends. In this study, PLA/PBAT blends and PLA/PBAT/CaCO3 composites were prepared by an internal mixer. PLA-g-MA was as a compatibilizer. Mechanical properties and rheological properties of the blend and composites were investigated. In addition, morphologies of PLA/PBAT blend and their composites were observed by a scanning electron microscope (SEM). The incorporation of PBAT gave rise to remarkable improvement in elongation at break and impact strength of PLA. Tensile strength of PLA/PBAT blend was enhanced by adding PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased while tensile strength and elongation at break decreased.</jats:p>

Journal

Advanced Materials ResearchCrossRef

Published: Aug 1, 2010

There are no references for this article.