Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Ômura, K. Honda (2005)
Priority of color over scent during flower visitation by adult Vanessa indica butterfliesOecologia, 142
S. Holm (1979)
A Simple Sequentially Rejective Multiple Test ProcedureScandinavian Journal of Statistics, 6
C. Majetic, R. Raguso, S. Tonsor, T. Ashman (2007)
Flower color-flower scent associations in polymorphic Hesperis matronalis (Brassicaceae).Phytochemistry, 68 6
B. Heinrich, P. Raven (1972)
Energetics and pollination ecology.Science, 176 4035
I. Kulahci, A. Dornhaus, D. Papaj (2008)
Multimodal signals enhance decision making in foraging bumble-beesProceedings of the Royal Society B: Biological Sciences, 275
Geraldine Wright, Amy Lutmerding, N. Dudareva, B. Smith (2005)
Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera)Journal of Comparative Physiology A, 191
B. Schatz, C. Djiéto‐Lordon, L. Dormont, J. Bessière, D. McKey, R. Blatrix (2009)
A simple non-specific chemical signal mediates defence behaviour in a specialised ant–plant mutualismCurrent Biology, 19
M. Giurfa (2007)
Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic wellJournal of Comparative Physiology A, 193
N. Dudareva, Florence Negre, Dinesh Nagegowda, I. Orlova (2006)
Plant Volatiles: Recent Advances and Future PerspectivesCritical Reviews in Plant Sciences, 25
V. Simon, L. Dumergues, G. Solignac, L. Torres (2005)
Biogenic emissions from Pinus halepensis: a typical species of the Mediterranean areaAtmospheric Research, 74
J. Warren, S. Mackenzie (2001)
Why are all colour combinations not equally represented as flower-colour polymorphisms?The New phytologist, 151 1
D. Tholl, W. Boland, A. Hansel, F. Loreto, U. Röse, J. Schnitzler (2006)
Practical approaches to plant volatile analysis.The Plant journal : for cell and molecular biology, 45 4
A. Guenther, C. Hewitt, D. Erickson, R. Fall, C. Geron, Tom, Graedel, P. Harley, L. Klinger, M. Lerdau, W. Mckay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, John Taylor, Pat, Zimmerman (1995)
A global model of natural volatile organic compound emissionsJournal of Geophysical Research, 100
R. Gegear, Jessamyn Manson, J. Thomson (2007)
Ecological context influences pollinator deterrence by alkaloids in floral nectar.Ecology letters, 10 5
B. Komischke, M. Giurfa, H. Lachnit, D. Malun (2002)
Successive olfactory reversal learning in honeybees.Learning & memory, 9 3
C. Martin, Jin Hailing, K. Schwinn, J. Romeo, J. Saunders, B. Matthews (2001)
Mechanisms and applications of transcriptional control of phenylpropanoid metabolism.
S. Goodwin, N. Kolosova, Christine Kish, K. Wood, N. Dudareva, M. Jenks (2003)
Cuticle characteristics and volatile emissions of petals in Antirrhinum majus.Physiologia plantarum, 117 3
J. Romeo, J. Saunders, B. Matthews (2001)
Regulation of phytochemicals by molecular techniques
W. Roelofs (1984)
Electroantennogram Assays: Rapid and Convenient Screening Procedures for Pheromones
R. Adams (2001)
Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy
R. Ricklefs, S. Renner (1994)
SPECIES RICHNESS WITHIN FAMILIES OF FLOWERING PLANTSEvolution, 48
E. Tastard, C. Andalo, M. Giurfa, M. Burrus, C. Thébaud (2008)
Flower colour variation across a hybrid zone in Antirrhinum as perceived by bumblebee pollinatorsArthropod-Plant Interactions, 2
A. Zuker, T. Tzfira, H. Ben-Meir, M. Ovadis, Elena Shklarman, H. Itzhaki, G. Forkmann, S. Martens, Inbal Neta-Sharir, D. Weiss, A. Vainstein (2002)
Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase geneMolecular Breeding, 9
S. Moukhtar, B. Bessagnet, L. Rouil, V. Simon (2005)
Monoterpene emissions from Beech (Fagus sylvatica) in a French forest and impact on secondary pollutants formation at regional scaleAtmospheric Environment, 39
M. Giurfa, M. Vorobyev (1997)
THE DETECTION AND RECOGNITION OF COLOR STIMULI BY HONEYBEES: PERFORMANCE AND MECHANISMSIsrael Journal of Plant Sciences, 45
J. Kunze, A. Gumbert (2001)
The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systemsBehavioral Ecology, 12
R. Mitchell, Rebecca Irwin, Rebecca Flanagan, J. Karron (2009)
Ecology and evolution of plant-pollinator interactions.Annals of botany, 103 9
M. Komenda, E. Parusel, A. Wedel, R. Koppmann (2001)
Measurements of biogenic VOC emissions: sampling, analysis and calibrationAtmospheric Environment, 35
L. Chittka, J. Thomson (2005)
Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution
E. Odell, R. Raguso, K. Jones (1999)
Bumblebee Foraging Responses to Variation in Floral Scent and Color in Snapdragons (Antirrhinum: Scrophulariaceae), 142
R. Raguso (2008)
Wake Up and Smell the Roses: The Ecology and Evolution of Floral ScentAnnual Review of Ecology, Evolution, and Systematics, 39
J. Knudsen, R. Eriksson, J. Gershenzon, B. Ståhl (2006)
Diversity and distribution of floral scentThe Botanical Review, 72
R. Raguso (2009)
Floral scent in a whole‐plant context: moving beyond pollinator attractionFunctional Ecology, 23
R. Rabus, M. Kube, A. Beck, F. Widdel, R. Reinhardt (2002)
Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1Archives of Microbiology, 178
A. Whibley, N. Langlade, C. Andalo, Andy Hanna, A. Bangham, C. Thébaud, E. Coen (2006)
Evolutionary Paths Underlying Flower Color Variation in AntirrhinumScience, 313
R. Perry, D. Green, J. Maloney (2007)
Perry's Chemical Engineers' Handbook
M. Giurfa, R. Menzel (1997)
Insect visual perception: complex abilities of simple nervous systemsCurrent Opinion in Neurobiology, 7
N Dudareva, D Martin, CM Kish, N Kolosova, N Gorenstein, J Fäldt, B Miller, J Bohlmann (2003)
(E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamilyP Cell, 15
A. Jorgensen, K. Picel, V. Stamoudis (1990)
Prediction of gas chromatography flame ionization detector response factors from molecular structuresAnalytical Chemistry, 62
R. Cripps, Peter Trudgill, John Whateley (1978)
The metabolism of 1-phenylethanol and acetophenone by Nocardia T5 and an Arthrobacter species.European journal of biochemistry, 86 1
N. Dudareva, Diane Martin, Christine Kish, N. Kolosova, Nina Gorenstein, J. Fäldt, Barbara Miller, J. Bohlmann (2003)
(E)-β-Ocimene and Myrcene Synthase Genes of Floral Scent Biosynthesis in Snapdragon: Function and Expression of Three Terpene Synthase Genes of a New Terpene Synthase Subfamily Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.011015.The Plant Cell Online, 15
C. Andalo, M. Cruzan, C. Cazettes, Benoit Pujol, Monique Burrus, Christophe Thébaud (2010)
Post-pollination barriers do not explain the persistence of two distinct Antirrhinum subspecies with parapatric distributionPlant Systematics and Evolution, 286
L. Harder, S. Barrett (2007)
Ecology and Evolution of Flowers
F. Guerrieri, M. Schubert, J. Sandoz, M. Giurfa (2005)
Perceptual and Neural Olfactory Similarity in HoneybeesPLoS Biology, 3
Jeffrey Riffell, R. Alarcón, L. Abrell, G. Davidowitz, J. Bronstein, J. Hildebrand (2008)
Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactionsProceedings of the National Academy of Sciences, 105
J. Kesselmeier, L. Schäfer, P. Ciccioli, E. Brancaleoni, A. Cecinato, M. Frattoni, P. Foster, V. Jacob, J. Denis, J. Fugit, L. Dutaur, L. Torres (1996)
Emission of monoterpenes and isoprene from a Mediterranean oak species Quercus ilex L. measured within the BEMA (Biogenic Emissions in the Mediterranean Area) projectAtmospheric Environment, 30
J. Perry (1934)
Chemical Engineers' Handbook
F. Dupuy, J. Sandoz, M. Giurfa, R. Josens (2006)
Individual olfactory learning in Camponotus antsAnimal Behaviour, 72
G. Stebbins (1970)
Adaptive Radiation of Reproductive Characteristics in Angiosperms, I: Pollination MechanismsAnnual Review of Ecology, Evolution, and Systematics, 1
Nina Deisig, H. Lachnit, M. Giurfa (2002)
The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations.Learning & memory, 9 3
L. Comba, S. Corbet, H. Hunt, S. Outram, J. Parker, B. Glover (2000)
The role of genes influencing the corolla in pollination of Antirrhinum majusPlant Cell and Environment, 23
N. Dudareva, Lisa Murfitt, C. Mann, Nina Gorenstein, N. Kolosova, Christine Kish, C. Bonham, K. Wood (2000)
Developmental Regulation of Methyl Benzoate Biosynthesis and Emission in Snapdragon FlowersPlant Cell, 12
Jessamyn Manson, M. Otterstatter, J. Thomson (2009)
Consumption of a nectar alkaloid reduces pathogen load in bumble beesOecologia, 162
K. Schwinn, J. Venail, Yongjin Shang, S. Mackay, V. Alm, E. Butelli, R. Oyama, P. Bailey, K. Davies, Cathie Martin (2006)
A Small Family of MYB-Regulatory Genes Controls Floral Pigmentation Intensity and Patterning in the Genus Antirrhinum[W]The Plant Cell Online, 18
N. Erbilgin, N. Gillette, D. Owen, S. Mori, A. Nelson, F. Uzoh, D. Wood (2008)
Acetophenone superior to verbenone for reducing attraction of western pine beetle Dendroctonus brevicomis to its aggregation pheromoneAgricultural and Forest Entomology, 10
D. Thiéry, F. Marion-Poll (1998)
Electroantennogram responses of Douglas-fir seed chalcids to plant volatiles.Journal of insect physiology, 44 5-6
V. Simon, L. Dumergues, P. Bouchou, L. Torres, A. López (2005)
Isoprene emission rates and fluxes measured above a Mediterranean oak ( Quercus pubescens) forestAtmospheric Research, 74
Danelia Sabillón, L. Cremades (2001)
Diurnal and seasonal variation of monoterpene emission rates for two typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements—relationship with temperature and PARAtmospheric Environment, 35
Two wild subspecies of snapdragon, Antirrhinum majus, subspecies pseudomajus and striatum, differ in floral color and can be visually discriminated by insect visitors. The extent to which olfactory cues derived from floral scents contribute to discrimination between snapdragon subspecies is however unknown. We tested whether these two subspecies differ in floral scent and whether these olfactory differences are used by bumblebees (Bombus terrestris) to discriminate between them. We grew individuals of both subspecies, collected from a total of seven wild populations, under controlled conditions. We quantified the volatile organic compounds (VOCs) emitted by the flowers using gas-chromatography/mass-spectrometry/flame-ionization-detection. We studied antennal detection of VOCs by bumblebees, by means of electroantennogram study (EAG). We also performed behavioral experiments in a Y-maze to determine the innate response of bumblebees to the main floral VOCs emitted by our snapdragon subspecies. The floral scent of Antirrhinum majus pseudomajus contained three volatile benzenoids absent in the floral scent of Antirrhinum majus striatum. One of them, acetophenone, contributed over 69% of the absolute emissions of A. majus pseudomajus. These benzenoids elicited a significantly higher EAG response compared with other VOCs. In the Y-maze, bumblebees were significantly less attracted by acetophenone, suggesting an aversive effect of this VOC. Our findings indicate that bumblebees are able to discriminate between the two Antirrhinum majus subspecies. Differences in flower scent between these subspecies and olfactory bumblebee preferences are discussed in the light of biochemical constraints on VOCs synthesis and of the role of flower scent in the evolutionary ecology of A. majus.
Behavioral Ecology and Sociobiology – Springer Journals
Published: Nov 26, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.