Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees

Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees Two wild subspecies of snapdragon, Antirrhinum majus, subspecies pseudomajus and striatum, differ in floral color and can be visually discriminated by insect visitors. The extent to which olfactory cues derived from floral scents contribute to discrimination between snapdragon subspecies is however unknown. We tested whether these two subspecies differ in floral scent and whether these olfactory differences are used by bumblebees (Bombus terrestris) to discriminate between them. We grew individuals of both subspecies, collected from a total of seven wild populations, under controlled conditions. We quantified the volatile organic compounds (VOCs) emitted by the flowers using gas-chromatography/mass-spectrometry/flame-ionization-detection. We studied antennal detection of VOCs by bumblebees, by means of electroantennogram study (EAG). We also performed behavioral experiments in a Y-maze to determine the innate response of bumblebees to the main floral VOCs emitted by our snapdragon subspecies. The floral scent of Antirrhinum majus pseudomajus contained three volatile benzenoids absent in the floral scent of Antirrhinum majus striatum. One of them, acetophenone, contributed over 69% of the absolute emissions of A. majus pseudomajus. These benzenoids elicited a significantly higher EAG response compared with other VOCs. In the Y-maze, bumblebees were significantly less attracted by acetophenone, suggesting an aversive effect of this VOC. Our findings indicate that bumblebees are able to discriminate between the two Antirrhinum majus subspecies. Differences in flower scent between these subspecies and olfactory bumblebee preferences are discussed in the light of biochemical constraints on VOCs synthesis and of the role of flower scent in the evolutionary ecology of A. majus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Behavioral Ecology and Sociobiology Springer Journals

Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees

Loading next page...
 
/lp/springer-journals/floral-scent-variation-in-two-antirrhinum-majus-subspecies-influences-GsMr0a2OYT

References (58)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Life Sciences; Behavioral Sciences; Zoology; Animal Ecology
ISSN
0340-5443
eISSN
1432-0762
DOI
10.1007/s00265-010-1106-x
Publisher site
See Article on Publisher Site

Abstract

Two wild subspecies of snapdragon, Antirrhinum majus, subspecies pseudomajus and striatum, differ in floral color and can be visually discriminated by insect visitors. The extent to which olfactory cues derived from floral scents contribute to discrimination between snapdragon subspecies is however unknown. We tested whether these two subspecies differ in floral scent and whether these olfactory differences are used by bumblebees (Bombus terrestris) to discriminate between them. We grew individuals of both subspecies, collected from a total of seven wild populations, under controlled conditions. We quantified the volatile organic compounds (VOCs) emitted by the flowers using gas-chromatography/mass-spectrometry/flame-ionization-detection. We studied antennal detection of VOCs by bumblebees, by means of electroantennogram study (EAG). We also performed behavioral experiments in a Y-maze to determine the innate response of bumblebees to the main floral VOCs emitted by our snapdragon subspecies. The floral scent of Antirrhinum majus pseudomajus contained three volatile benzenoids absent in the floral scent of Antirrhinum majus striatum. One of them, acetophenone, contributed over 69% of the absolute emissions of A. majus pseudomajus. These benzenoids elicited a significantly higher EAG response compared with other VOCs. In the Y-maze, bumblebees were significantly less attracted by acetophenone, suggesting an aversive effect of this VOC. Our findings indicate that bumblebees are able to discriminate between the two Antirrhinum majus subspecies. Differences in flower scent between these subspecies and olfactory bumblebee preferences are discussed in the light of biochemical constraints on VOCs synthesis and of the role of flower scent in the evolutionary ecology of A. majus.

Journal

Behavioral Ecology and SociobiologySpringer Journals

Published: Nov 26, 2010

There are no references for this article.