Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Charcot–Marie–Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases

Charcot–Marie–Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases AbstractCharcot–Marie–Tooth type 4B (CMT4B) is a severe autosomal recessive neuropathy with demyelination and myelin outfoldings of the nerve. This disorder is genetically heterogeneous, but thus far, mutations in myotubularin-related 2 (MTMR2) and MTMR13 genes have been shown to underlie CMT4B1 and CMT4B2, respectively. MTMR2 and MTMR13 belong to a family of ubiquitously expressed proteins sharing homology with protein tyrosine phosphatases (PTPs). The MTMR family, which has 14 members in humans, comprises catalytically active proteins, such as MTMR2, and catalytically inactive proteins, such as MTMR13. Despite their homology with PTPs, catalytically active MTMR phosphatases dephosphorylate both PtdIns3P and PtdIns(3,5)P2 phosphoinositides. Thus, MTMR2 and MTMR13 may regulate vesicular trafficking in Schwann cells. Loss of these proteins could lead to uncontrolled folding of myelin and, ultimately, to CMT4B. In this review, we discuss recent findings on this interesting protein family with the main focus on MTMR2 and MTMR13 and their involvement in the biology of Schwann cell and CMT4B neuropathies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Expert Reviews in Molecular Medicine Cambridge University Press

Charcot–Marie–Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases

Expert Reviews in Molecular Medicine , Volume 9 (25): 16 – Nov 1, 3

Charcot–Marie–Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases

Expert Reviews in Molecular Medicine , Volume 9 (25): 16 – Nov 1, 3

Abstract

AbstractCharcot–Marie–Tooth type 4B (CMT4B) is a severe autosomal recessive neuropathy with demyelination and myelin outfoldings of the nerve. This disorder is genetically heterogeneous, but thus far, mutations in myotubularin-related 2 (MTMR2) and MTMR13 genes have been shown to underlie CMT4B1 and CMT4B2, respectively. MTMR2 and MTMR13 belong to a family of ubiquitously expressed proteins sharing homology with protein tyrosine phosphatases (PTPs). The MTMR family, which has 14 members in humans, comprises catalytically active proteins, such as MTMR2, and catalytically inactive proteins, such as MTMR13. Despite their homology with PTPs, catalytically active MTMR phosphatases dephosphorylate both PtdIns3P and PtdIns(3,5)P2 phosphoinositides. Thus, MTMR2 and MTMR13 may regulate vesicular trafficking in Schwann cells. Loss of these proteins could lead to uncontrolled folding of myelin and, ultimately, to CMT4B. In this review, we discuss recent findings on this interesting protein family with the main focus on MTMR2 and MTMR13 and their involvement in the biology of Schwann cell and CMT4B neuropathies.

Loading next page...
 
/lp/cambridge-university-press/charcot-marie-tooth-type-4b-demyelinating-neuropathy-deciphering-the-G46sJ2VfVp

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Cambridge University Press
Copyright
Copyright © Cambridge University Press 2007
eISSN
1462-3994
DOI
10.1017/S1462399407000439
Publisher site
See Article on Publisher Site

Abstract

AbstractCharcot–Marie–Tooth type 4B (CMT4B) is a severe autosomal recessive neuropathy with demyelination and myelin outfoldings of the nerve. This disorder is genetically heterogeneous, but thus far, mutations in myotubularin-related 2 (MTMR2) and MTMR13 genes have been shown to underlie CMT4B1 and CMT4B2, respectively. MTMR2 and MTMR13 belong to a family of ubiquitously expressed proteins sharing homology with protein tyrosine phosphatases (PTPs). The MTMR family, which has 14 members in humans, comprises catalytically active proteins, such as MTMR2, and catalytically inactive proteins, such as MTMR13. Despite their homology with PTPs, catalytically active MTMR phosphatases dephosphorylate both PtdIns3P and PtdIns(3,5)P2 phosphoinositides. Thus, MTMR2 and MTMR13 may regulate vesicular trafficking in Schwann cells. Loss of these proteins could lead to uncontrolled folding of myelin and, ultimately, to CMT4B. In this review, we discuss recent findings on this interesting protein family with the main focus on MTMR2 and MTMR13 and their involvement in the biology of Schwann cell and CMT4B neuropathies.

Journal

Expert Reviews in Molecular MedicineCambridge University Press

Published: Nov 1, 3

There are no references for this article.