Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Evans, M. Dipp (2002)
Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphate-ribose, smooth muscle Ca2+ stores and the endotheliumRespiratory Physiology & Neurobiology, 132
Satoru Kumasaka, H. Shoji, E. Okabe (1999)
Novel mechanisms involved in superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum linked to cyclic ADP-ribose stimulation.Antioxidants & redox signaling, 1 1
R. Guzy, B. Hoyos, E. Robin, Hong Chen, Liping Liu, Liping Liu, K. Mansfield, M. Simon, M. Simon, Ulrich Hämmerling, P. Schumacker (2005)
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.Cell metabolism, 1 6
S. Wallenstein, C. Zucker, J. Fleiss (1980)
Some Statistical Methods Useful in Circulation ResearchCirculation Research, 47
V. Thannickal, B. Fanburg (2000)
Reactive oxygen species in cell signaling.American journal of physiology. Lung cellular and molecular physiology, 279 6
J. Mehta, J. Campian, J. Guardiola, J. Cabrera, E. Weir, J. Eaton (2008)
Generation of oxidants by hypoxic human pulmonary and coronary smooth-muscle cells.Chest, 133 6
T. Hoek, L. Becker, Z. Shao, Changqing Li, P. Schumacker (1998)
Reactive Oxygen Species Released from Mitochondria during Brief Hypoxia Induce Preconditioning in Cardiomyocytes*The Journal of Biological Chemistry, 273
Y. Morio, I. McMurtry (2002)
Ca(2+) release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs.Journal of applied physiology, 92 2
R. Leach, Heidi Hill, V. Snetkov, T. Robertson, J. Ward (2001)
Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensorThe Journal of Physiology, 536
S. Archer, E. Weir, H. Reeve, E. Michelakis (2000)
Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.Advances in experimental medicine and biology, 475
V. Pastukh, M. Ruchko, O. Gorodnya, G. Wilson, M. Gillespie (2007)
Sequence-specific oxidative base modifications in hypoxia-inducible genes.Free radical biology & medicine, 43 12
C. Dooley, Timothy Dore, G. Hanson, W. Coyt, S. James, Remington, R. Tsien (2004)
Imaging Dynamic Redox Changes in Mammalian Cells with Green Fluorescent Protein Indicators*Journal of Biological Chemistry, 279
R. Moudgil, E. Michelakis, Stephen Archer (2004)
Hypoxic Pulmonary VasoconstrictionJournal of applied physiology, 98 1
Qing-Song Wang, Yun‐Min Zheng, Ling Dong, Y. Ho, Zhongmao Guo, Yong-Xiao Wang (2007)
Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes.Free radical biology & medicine, 42 5
M. Dipp, P. Nye, A. Evans (2001)
Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle.American journal of physiology. Lung cellular and molecular physiology, 281 2
K. Mohazzab, M. Wolin (1994)
Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor.The American journal of physiology, 267 6 Pt 1
L. Brown, M. MacDonald, D. Lehn, S. Moran (1994)
Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA. Evidence for EF-hand calcium-binding domains.The Journal of biological chemistry, 269 20
A. Miyawaki, J. Llopis, R. Heim, J. Mccaffery, J. Adams, M. Ikura, M. Ikura, R. Tsien (1997)
Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulinNature, 388
S. Archer, J. Huang, T. Henry, D. Peterson, E. Weir (1993)
A redox-based O2 sensor in rat pulmonary vasculature.Circulation research, 73 6
S. Archer, Daniel Nelson, E. Weir (1989)
Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung.Journal of applied physiology, 67 5
M. Cannon, S. Remington (2008)
Redox-sensitive green fluorescent protein: probes for dynamic intracellular redox responses. A review.Methods in molecular biology, 476
J. López-Barneo, R. Pardal, R. Montoro, T. Smani, J. Garcı́a-Hirschfeld, J. Ureña (1999)
K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues.Respiration physiology, 115 2
S. Archer, E. Souil, A. Dinh-Xuan, B. Schremmer, J. Mercier, Abdelhamid Yaagoubi, L. Nguyen-Huu, H. Reeve, V. Hampl (1998)
Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes.The Journal of clinical investigation, 101 11
K. Jiang, C. Schwarzer, E. Lally, Shibo Zhang, S. Ruzin, T. Machen, S. Remington, L. Feldman (2006)
Expression and Characterization of a Redox-Sensing Green Fluorescent Protein (Reduction-Oxidation-Sensitive Green Fluorescent Protein) in ArabidopsisPlant Physiology, 141
Kyle Mansfield, R. Guzy, Yi Pan, Regina Young, Timothy Cash, P. Schumacker, M. Simon (2005)
Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation.Cell metabolism, 1 6
M. Sweeney, J. Yuan (2000)
Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channelsRespiratory Research, 1
A. Pushkin, G. Carpenito, N. Abuladze, D. Newman, V. Tsuprun, S. Ryazantsev, Srilakshmi Motemoturu, P. Sassani, N. Solovieva, R. Dukkipati, I. Kurtz (2004)
Structural characterization, tissue distribution, and functional expression of murine aminoacylase III.American journal of physiology. Cell physiology, 286 4
N. Chandel, E. Maltepe, E. Goldwasser, Carol Mathieu, M. Simon, P. Schumacker (1998)
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription.Proceedings of the National Academy of Sciences of the United States of America, 95 20
E. Weir, S. Archer (1995)
The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channelsThe FASEB Journal, 9
J. Lohman, S. Remington (2008)
Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments.Biochemistry, 47 33
O. Griesbeck, G. Baird, R. Campbell, D. Zacharias, R. Tsien (2001)
Reducing the Environmental Sensitivity of Yellow Fluorescent ProteinThe Journal of Biological Chemistry, 276
Jingxiang Bai, A. Cederbaum (2000)
Overexpression of Catalase in the Mitochondrial or Cytosolic Compartment Increases Sensitivity of HepG2 Cells to Tumor Necrosis Factor-α-induced Apoptosis*The Journal of Biological Chemistry, 275
I. Spasojević, S. Liochev, I. Fridovich (1999)
Lucigenin: redox potential in aqueous media and redox cycling with O-(2) production.Archives of biochemistry and biophysics, 373 2
T. Robertson, D. Hague, P. Aaronson, J. Ward (2000)
Voltage‐independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the ratThe Journal of Physiology, 525
A. Lambert, M. Brand (2009)
Reactive oxygen species production by mitochondria.Methods in molecular biology, 554
J. Liu, J. Sham, L. Shimoda, P. Kuppusamy, J. Sylvester (2003)
Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries.American journal of physiology. Lung cellular and molecular physiology, 285 2
N. Weissmann, N. Ebert, M. Ahrens, H. Ghofrani, R. Schermuly, J. Hänze, L. Fink, F. Rose, J. Conzen, W. Seeger, F. Grimminger (2003)
Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs.American journal of respiratory cell and molecular biology, 29 6
S. Saitoh, Cuihua Zhang, J. Tune, B. Potter, T. Kiyooka, P. Rogers, Jarrod Knudson, G. Dick, A. Swafford, W. Chilian (2006)
Hydrogen Peroxide: A Feed-Forward Dilator That Couples Myocardial Metabolism to Coronary Blood FlowArteriosclerosis, Thrombosis, and Vascular Biology, 26
N. Weissmann, S. Zeller, Rolf Schäfer, C. Turowski, M. Ay, K. Quanz, H. Ghofrani, R. Schermuly, L. Fink, W. Seeger, F. Grimminger (2006)
Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction.American journal of respiratory cell and molecular biology, 34 4
Jian Wang, L. Shimoda, J. Sylvester (2004)
Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle.American journal of physiology. Lung cellular and molecular physiology, 286 4
N. Weissmann, A. Dietrich, Beate Fuchs, H. Kalwa, M. Ay, Rio Dumitrascu, A. Olschewski, Ursula Storch, M. Schnitzler, H. Ghofrani, R. Schermuly, Olaf Pinkenburg, W. Seeger, F. Grimminger, T. Gudermann (2006)
Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchangeProceedings of the National Academy of Sciences, 103
G. Waypa, R. Guzy, P. Mungai, Mathew Mack, J. Marks, M. Roe, P. Schumacker (2006)
Increases in Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Calcium Responses in Pulmonary Artery Smooth Muscle CellsCirculation Research, 99
A. Porcelli, A. Ghelli, C. Zanna, P. Pinton, R. Rizzuto, M. Rugolo (2005)
pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant.Biochemical and biophysical research communications, 326 4
Rakesh Rathore, Yun‐Min Zheng, Chun-Feng Niu, Qing‐Hua Liu, Amit Korde, Y. Ho, Yong-Xiao Wang (2008)
Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells.Free radical biology & medicine, 45 9
J. Duranteau, N. Chandel, A. Kulisz, Z. Shao, P. Schumacker (1998)
Intracellular Signaling by Reactive Oxygen Species during Hypoxia in Cardiomyocytes*The Journal of Biological Chemistry, 273
G. Waypa, J. Marks, Mathew Mack, Chan Boriboun, P. Mungai, P. Schumacker (2002)
Mitochondrial Reactive Oxygen Species Trigger Calcium Increases During Hypoxia in Pulmonary Arterial MyocytesCirculation Research: Journal of the American Heart Association, 91
M. Dipp, A. Evans (2001)
Cyclic ADP-Ribose Is the Primary Trigger for Hypoxic Pulmonary Vasoconstriction in the Rat Lung In SituCirculation Research: Journal of the American Heart Association, 89
I. Spasojević, S. Liochev, I. Fridovich (2000)
Lucigenin: Redox Potential in Aqueous Media and Redox Cycling with O−2 Production1☆Archives of Biochemistry and Biophysics, 373
J. Eu, Le Xu, J. Stamler, G. Meissner (1999)
Regulation of ryanodine receptors by reactive nitrogen species.Biochemical pharmacology, 57 10
Romeen Lavani, Wei-Tien Chang, T. Anderson, Z. Shao, K. Wojcik, Chang‐Qing Li, Robert Pietrowski, D. Beiser, A. Idris, K. Hamann, L. Becker, T. Hoek (2007)
Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury*Critical Care Medicine, 35
G. Hanson, R. Aggeler, D. Oglesbee, M. Cannon, R. Capaldi, R. Tsien, S. Remington (2004)
Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators*Journal of Biological Chemistry, 279
F. González-Pacheco, C. Caramelo, M. Castilla, J. Deudero, Javier Arias, S. Yagüe, Sonsoles Jiménez, R. Bragado, M. Alvarez-Arroyo (2002)
Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma.Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 17 3
E. Michelakis, V. Hampl, A. Nsair, Xichen Wu, Gwyneth Harry, A. Haromy, Rachita Gurtu, S. Archer (2002)
Diversity in Mitochondrial Function Explains Differences in Vascular Oxygen SensingCirculation Research: Journal of the American Heart Association, 90
A. Miyawaki, O. Griesbeck, R. Heim, R. Tsien (1999)
Dynamic and quantitative Ca2+ measurements using improved cameleons.Proceedings of the National Academy of Sciences of the United States of America, 96 5
V. Snetkov, P. Aaronson, J. Ward, G. Knock, T. Robertson (2003)
Capacitative calcium entry as a pulmonary specific vasoconstrictor mechanism in small muscular arteries of the ratBritish Journal of Pharmacology, 140
R. Guzy, Bhumika Sharma, Eric Bell, N. Chandel, P. Schumacker (2007)
Loss of the SdhB, but Not the SdhA, Subunit of Complex II Triggers Reactive Oxygen Species-Dependent Hypoxia-Inducible Factor Activation and TumorigenesisMolecular and Cellular Biology, 28
R. Guzy, M. Mack, P. Schumacker (2007)
Mitochondrial complex III is required for hypoxia-induced ROS production and gene transcription in yeast.Antioxidants & redox signaling, 9 9
G. Waypa, N. Chandel, P. Schumacker (2001)
Model for Hypoxic Pulmonary Vasoconstriction Involving Mitochondrial Oxygen SensingCirculation Research: Journal of the American Heart Association, 88
C. Marshall, A. Mamary, A. Verhoeven, B. Marshall (1996)
Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction.American journal of respiratory cell and molecular biology, 15 5
G. Gusarova, L. Dada, Aileen Kelly, C. Brodie, L. Witters, N. Chandel, J. Sznajder (2009)
α1-AMP-Activated Protein Kinase Regulates Hypoxia-Induced Na,K-ATPase Endocytosis via Direct Phosphorylation of Protein Kinase CζMolecular and Cellular Biology, 29
Hypoxia Triggers Subcellular Compartmental Redox Signaling in Vascular Smooth Muscle Cells Gregory B. Waypa, Jeremy D. Marks, Robert Guzy, Paul T. Mungai, Jacqueline Schriewer, Danijela Dokic, Paul T. Schumacker Rationale: Recent studies have implicated mitochondrial reactive oxygen species (ROS) in regulating hypoxic pulmonary vasoconstriction (HPV), but controversy exists regarding whether hypoxia increases or decreases ROS generation. Objective: This study tested the hypothesis that hypoxia induces redox changes that differ among subcellular compartments in pulmonary (PASMCs) and systemic (SASMCs) smooth muscle cells. Methods and Results: We used a novel, redox-sensitive, ratiometric fluorescent protein sensor (RoGFP) to assess the effects of hypoxia on redox signaling in cultured PASMCs and SASMCs. Using genetic targeting sequences, RoGFP was expressed in the cytosol (Cyto-RoGFP), the mitochondrial matrix (Mito-RoGFP), or the mitochon- drial intermembrane space (IMS-RoGFP), allowing assessment of oxidant signaling in distinct intracellular compartments. Superfusion of PASMCs or SASMCs with hypoxic media increased oxidation of both Cyto- RoGFP and IMS-RoGFP. However, hypoxia decreased oxidation of Mito-RoGFP in both cell types. The hypoxia-induced oxidation of Cyto-RoGFP was attenuated through the overexpression of cytosolic catalase in PASMCs. Conclusions: These results indicate that hypoxia causes a decrease in nonspecific ROS generation in the matrix compartment, whereas it
Circulation Research – Wolters Kluwer Health
Published: Feb 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.