Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Cartwright, P. Soardi, W. Woess (1993)
Martin and end compactifications for non-locally finite graphsTransactions of the American Mathematical Society, 338
Peter Gerl, W. Woess (1986)
Simple Random Walks on TreesEur. J. Comb., 7
V. Kaimanovich, A. Vershik (1983)
Random Walks on Discrete Groups: Boundary and EntropyAnnals of Probability, 11
Y. Derriennic (1975)
Marche aléatoire sur le groupe libre et frontière de Martin. Z. WahrscheinlichkeitstheorVerw. Geb., 32
H. Furstenberg (1963)
Noncommuting random productsTransactions of the American Mathematical Society, 108
S. Sawyer, T. Steger (1987)
The rate of escape for anisotropic random walks in a treeProbability Theory and Related Fields, 76
(1971)
Stochastic diierential equations and diiusion processes, North Holland / Kodansha
Michael Anderson, R. Schoen (1985)
Positive harmonic functions on complete manifolds of negative curvatureAnnals of Mathematics, 121
J. Dodziuk (1984)
Difference equations, isoperimetric inequality and transience of certain random walksTransactions of the American Mathematical Society, 284
A. Ancona (1988)
Positive harmonic functions and hyperbolicity
V. Kaimanovich (1992)
Dirichlet norms, capacities and generalized isoperimetric inequalities for Markov operatorsPotential Analysis, 1
M. Pinsky (1978)
Stochastic Riemannian Geometry
W. Woess (1989)
Boundaries of random walks on graphs and groups with infinitely many endsIsrael Journal of Mathematics, 68
A. Ancona (1987)
Negatively curved manifolds, elliptic operators, and the Martin boundaryAnnals of Mathematics, 125
(1980)
Quelques applications du th eor eme ergodique sous-additif
P. Cartier (1972)
Fonctions harmoniques sur un arbreSymp. Math., 9
M. Gromov, S.M. Gersten (1987)
Hyperbolic groupsEssays in Group theory
(1970)
A lower bound for the lowest eigenvalue of the Laplacian, Problems in Analysis , A symposium in honour of S
Michael Anderson (1983)
The Dirichlet problem at infinity for manifolds of negative curvatureJournal of Differential Geometry, 18
V.A. Kaimanovich (1985)
An entropy criterion for maximality of the boundary of random walks on discrete groupsSov. Math. Dokl., 31
S. Sawyer (1978)
Isotropic random walks in a treeZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 42
P. Gerl (1988)
Random walks on graphs with a strong isoperimetric inequalityJ. Theoret. Probab., 1
(1972)
Fonctions harmoniques sur un arbre, Symposia Math
J.-J. Prat (1975)
Etude asymptotique et convergence angulaire du mouvement Brownien sur une variété courbure négativeC.R. Acad. Sci. Paris, 280
(1989)
Notes on Negatively Curved Groups
Peter Gerl (1988)
Random walks on graphs with a strong isoperimetric propertyJournal of Theoretical Probability, 1
A.M. Vershik (1983)
Multiple-valued measure preserving mappings (polymorphisms) and Markov operatorsJ. Sov. Math., 23
É. Ghys, P. Harpe (1990)
Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov
C. Series (1983)
Martin boundaries of random walks on Fuchsian groupsIsrael Journal of Mathematics, 44
L. Rogers (1982)
Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00European Journal of Operational Research, 10
Patrick Billingsley (1970)
Convergence of Probability MeasuresThe Mathematical Gazette, 54
M. Picardello, W. Woess (1987)
Martin boundaries of random walks: ends of trees and groupsTransactions of the American Mathematical Society, 302
P. Buser (1982)
A note on the isoperimetric constantAnnales Scientifiques De L Ecole Normale Superieure, 15
H.A. Jung, L. Mirsky (1971)
Connectivity in infinite graphsStudies in Pure Math.
D. Sullivan (1983)
The Dirichlet problem at infinity for a negatively curved manifoldJournal of Differential Geometry, 18
Y. Derriennic (1975)
Marche aléatoire sur le groupe libre et frontière de MartinZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 32
H. Freudenthal (1944)
Über die Enden diskreter Räume und GruppenCommentarii Mathematici Helvetici, 17
J. Eschenburg (1994)
Comparison Theorems in Riemannian Geometry
I. Benjamini, Y. Peres (1992)
Random walks on a tree and capacity in the intervalAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 28
D. Cartwright, P. Soardi (1989)
Convergence to ends for random walks on the automorphism group of a tree, 107
I. Chavel (1984)
Eigenvalues in Riemannian geometry
(1985)
An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math
N. Varopoulos (1985)
Long range estimates for markov chainsBulletin Des Sciences Mathematiques, 109
A. Vershik (1983)
Many-valued measure-preserving mappings (polymorphisms) and Markovian operatorsJournal of Soviet Mathematics, 23
D. Cartwright, S. Sawyer (1991)
The martin boundary for general isotropic random walks in a treeJournal of Theoretical Probability, 4
(1975)
Z. Wahrscheinlichkeitsth . Verw. Geb
SummaryWe study the spatial behaviour of random walks on infinite graphs which are not necessarily invariant under some transitive group action and whose transition probabilities may have infinite range. We assume that the underlying graphG satisfies a strong isoperimetric inequality and that the transition operatorP is strongly reversible, uniformly irreducible and satisfies a uniform first moment condition. We prove that under these hypotheses the random walk converges almost surely to a random end ofG and that the Dirichlet problem forP-harmonic functions is solvable with respect to the end compactification If in addition the graph as a metric space is hyperbolic in the sense of Gromov, then the same conclusions also hold for the hyperbolic compactification in the place of the end compactification. The main tool is the exponential decay of the transition probabilities implied by the strong isoperimetric inequality. Finally, it is shown how the same technique can be applied to Brownian motion to obtain analogous results for Riemannian manifolds satisfying Cheeger's isoperimetric inequality. In particular, in this general context new (and simpler) proofs of well known results on the Dirichlet problem for negatively curved manifolds are obtained.
Probability Theory and Related Fields – Springer Journals
Published: Sep 1, 1992
Keywords: Manifold; Brownian Motion; Random Walk; Riemannian Manifold; Exponential Decay
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.