Access the full text.
Sign up today, get DeepDyve free for 14 days.
Xue Peng, E. Masai, H. Kitayama, K. Harada, Y. Katayama, M. Fukuda (2002)
Characterization of the 5-Carboxyvanillate Decarboxylase Gene and Its Role in Lignin-Related Biphenyl Catabolism in Sphingomonas paucimobilis SYK-6Applied and Environmental Microbiology, 68
E. Masai, K. Harada, Xue Peng, H. Kitayama, Y. Katayama, M. Fukuda (2002)
Cloning and Characterization of the Ferulic Acid Catabolic Genes of Sphingomonas paucimobilis SYK-6Applied and Environmental Microbiology, 68
K. Hammel, D. Cullen (2008)
Role of fungal peroxidases in biological ligninolysis.Current opinion in plant biology, 11 3
S. Saha, P. Swaminathan, C. Raghavan, L. Uma, G. Subramanian (2010)
Ligninolytic and antioxidative enzymes of a marine cyanobacterium Oscillatoria willei BDU 130511 during Poly R-478 decolourization.Bioresource technology, 101 9
A. Enoki, M. Gold (1982)
Degradation of the diarylpropane lignin model compound 1-(3′,4′-diethoxyphenyl)-1,3-dihydroxy-2-(4′'-methoxyphenyl)-propane and derivatives by the basidiomycete Phanerochaete chrysosporiumArchives of Microbiology, 132
Daljit Arora, Rakesh Sharma (2010)
Ligninolytic Fungal Laccases and Their Biotechnological ApplicationsApplied Biochemistry and Biotechnology, 160
M. Gold, M. Kuwahara, A. Chiu, J. Glenn (1984)
Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium.Archives of biochemistry and biophysics, 234 2
E. Marasco, C. Schmidt-Dannert (2008)
Identification of Bacterial Carotenoid Cleavage Dioxygenase Homologues That Cleave the Interphenyl α,β Double Bond of Stilbene Derivatives via a Monooxygenase ReactionChemBioChem, 9
E. Masai, Yuko Yamamoto, Tomohiko Inoue, Kazuhiro Takamura, H. Hara, D. Kasai, Y. Katayama, M. Fukuda (2007)
Characterization of ligV Essential for Catabolism of Vanillin by Sphingomonas paucimobilis SYK-6Bioscience, Biotechnology, and Biochemistry, 71
T. Bugg (2003)
Dioxygenase Enzymes: Catalytic Mechanisms and Chemical ModelsChemInform, 34
K. Piontek, M. Antorini, T. Choinowski (2002)
Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers*The Journal of Biological Chemistry, 277
C. Thurston (1994)
The structure and function of fungal laccasesMicrobiology, 140
S. Kamoda, Y. Saburi (1991)
Cloning of a Lignostilbene-α,β-dioxygenase Isozyme Gene from Pseudomonas Paucimobilis TMY1009Bioscience, Biotechnology, and Biochemistry, 59
R. Vicuña (1988)
Bacterial degradation of ligninEnzyme and Microbial Technology, 10
K. Freudenberg (1965)
Lignin: Its Constitution and Formation from p-Hydroxycinnamyl AlcoholsScience, 148
Hiroyuki Wariishi, K. Valli, Michael Gold (1991)
In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium.Biochemical and biophysical research communications, 176 1
P. Ander, K. Eriksson (1976)
The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentumArchives of Microbiology, 109
K. Hammel, M. Tien, B. Kalyanaraman, T. Kirk (1985)
Mechanism of oxidative C alpha-C beta cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals.The Journal of biological chemistry, 260 14
J. Prousek (2007)
Fenton chemistry in biology and medicinePure and Applied Chemistry, 79
Angel Martı́nez (2002)
Molecular biology and structure-function of lignin-degrading heme peroxidasesEnzyme and Microbial Technology, 30
C. Trigo, A. Ball (1994)
Production of extracellular enzymes during the solubilisation of straw by Thermomonospora fusca BD25Applied Microbiology and Biotechnology, 41
M. Ohta, T. Higuchi, S. Iwahara (1979)
Microbial degradation of dehydrodiconiferyl alcohol, a lignin substructure modelArchives of Microbiology, 121
Stuardo Macarena, Larrondo Fernando, Vásquez Mónica, Vicuña Rafael, G. Bernardo (2005)
Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium.FEMS microbiology letters, 242 1
S. Camarero, David Ibarra, M. Martínez, Angel Martı́nez (2005)
Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant DyesApplied and Environmental Microbiology, 71
Tien (1986)
10.1016/S0021-9258(17)35994-XJ. Biol. Chem., 26
F. Nakatsubo, T. Kirk, M. Shimada, T. Higuchi (1981)
Metabolism of a phenylcoumaran substructure lignin model compound in ligninolytic cultures of Phanerochaete chrysosporiumArchives of Microbiology, 128
J. Mao, K. Holtman, J. Scott, J. Kadla, K. Schmidt-Rohr (2006)
Differences between lignin in unprocessed wood, milled wood, mutant wood, and extracted lignin detected by 13C solid-state NMR.Journal of agricultural and food chemistry, 54 26
Xue Peng, E. Masai, D. Kasai, K. Miyauchi, Y. Katayama, M. Fukuda (2005)
A Second 5-Carboxyvanillate Decarboxylase Gene, ligW2, Is Important for Lignin-Related Biphenyl Catabolism in Sphingomonas paucimobilis SYK-6Applied and Environmental Microbiology, 71
U. Tuor, H. Wariishi, H. Schoemaker, M. Gold (1992)
Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound.Biochemistry, 31 21
Y. Kamaya, F. Nakatsubo, T. Higuchi, S. Iwahara (1981)
Degradation of d,l-syringaresinol, a β-β′ linked lignin model compound, by Fusarium solani M-13-1Archives of Microbiology, 129
E. Masai, Y. Katayama, M. Fukuda (2007)
Genetic and Biochemical Investigations on Bacterial Catabolic Pathways for Lignin-Derived Aromatic CompoundsBioscience, Biotechnology, and Biochemistry, 71
Rafael Vicuña, Bernardo González, M. Mozuch, T. Kirk (1987)
Metabolism of Lignin Model Compounds of the Arylglycerol-β-Aryl Ether Type by Pseudomonas acidovorans D3Applied and Environmental Microbiology, 53
Steven Edwards, R. Raag, Hiroyuki Wariishi, Michael Gold, Thomas Poulos (1993)
Crystal structure of lignin peroxidase.Proceedings of the National Academy of Sciences of the United States of America, 90
I. Reid (1998)
Fate of Residual Lignin during Delignification of Kraft Pulp by Trametes versicolorApplied and Environmental Microbiology, 64
A. Enoki, Gwendolyn Goldsby, M. Gold (1980)
Metabolism of the lignin model compounds veratrylglycerol-β-guaiacyl ether and 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether by Phanerochaete chrysosporiumArchives of Microbiology, 125
A. Khindaria, I. Yamazaki, S. Aust (1996)
Stabilization of the veratryl alcohol cation radical by lignin peroxidase.Biochemistry, 35 20
D. Crawford, A. Pometto, R. Crawford (1983)
Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation IntermediateApplied and Environmental Microbiology, 45
E. Masai, Y. Katayama, S. Kubota, S. Kawai, M. Yamasaki, N. Morohoshi (1993)
A bacterial enzyme degrading the model lignin compound β‐etherase is a member of the glutathione‐S‐transferase superfamilyFEBS Letters, 323
A. Levasseur, F. Piumi, P. Coutinho, C. Rancurel, M. Asther, M. Delattre, B. Henrissat, P. Pontarotti, M. Asther, E. Record (2008)
FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds.Fungal genetics and biology : FG & B, 45 5
T. Bugg, C. Winfield (1998)
Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathwaysNatural Product Reports, 15
L. Godoy, C. Martínez, N. Carrasco, M. Ganga (2008)
Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis.International journal of food microbiology, 127 1-2
Masai Eiji, S. Kubota, Y. Katayama, S. Kawai, M. Yamasaki, N. Morohoshi (1993)
Characterization of the Cα-Dehydrogenase Gene Involved in the Cleavage of β-Aryl Ether by Pseudomonas paucimobilisBioscience, Biotechnology, and Biochemistry, 57
Mark Ahmad, Joseph Roberts, E. Hardiman, Rahul Singh, L. Eltis, T. Bugg (2011)
Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase.Biochemistry, 50 23
N. Prim, F. Pastor, P. Díaz (2003)
Biochemical studies on cloned Bacillus sp. BP-7 phenolic acid decarboxylase PadAApplied Microbiology and Biotechnology, 63
P. Ferreira, N. Diez, Carmen Gutieirrez, J. Soliveri, J. Copa-Patiño (1999)
Streptomyces avermitilis CECT 3339 produces a ferulic acid esterase able to release ferulic acid from sugar beet pulp soluble feruloylated oligosaccharidesJournal of the Science of Food and Agriculture, 79
M. Hofrichter (2002)
Review: lignin conversion by manganese peroxidase (MnP)Enzyme and Microbial Technology, 30
N. Ornston, A. Segura, P. Bünz, David D'Argenio, L. Acinetobacter (1999)
Genetic Analysis of a Chromosomal Region ContainingvanA and vanB, Genes Required for Conversion of Either Ferulate or Vanillate to Protocatechuate inAcinetobacterJournal of Bacteriology, 181
M. Hofrichter, A. Steinbüchel (2001)
Lignin, humic substances and coal
Z. Kerem, W. Bao, K. Hammel (1998)
Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete.Proceedings of the National Academy of Sciences of the United States of America, 95 18
Hiroyuki Wariishi, H. Dunford, I. Macdonald, M. Gold (1989)
Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism.The Journal of biological chemistry, 264 6
J. Landete, H. Rodríguez, J. Curiel, B. Rivas, J. Mancheño, R. Muñoz (2010)
Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84Journal of Industrial Microbiology & Biotechnology, 37
E. Masai, Y. Katayama, S. Nishikawa, M. Yamasaki, N. Morohoshi, T. Haraguchi (1989)
Detection and localization of a new enzyme catalyzing the β‐aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK‐6)FEBS Letters, 249
D. Kasai, E. Masai, K. Miyauchi, Y. Katayama, M. Fukuda (2005)
Characterization of the Gallate Dioxygenase Gene: Three Distinct Ring Cleavage Dioxygenases Are Involved in Syringate Degradation by Sphingomonas paucimobilis SYK-6Journal of Bacteriology, 187
W. Doyle, W. Blodig, N. Veitch, K. Piontek, Andrew Smith (1998)
Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis.Biochemistry, 37 43
S. Camarero, Olga García, T. Vidal, J. Colom, J. Río, A. Gutiérrez, J. Gras, R. Monje, M. Martínez, Angel Martı́nez (2004)
Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator systemEnzyme and Microbial Technology, 35
Françoise Brunel, John Davison (1988)
Cloning and sequencing of Pseudomonas genes encoding vanillate demethylaseJournal of Bacteriology, 170
C. Harwood, R. Parales (1996)
THE β-KETOADIPATE PATHWAY AND THE BIOLOGY OF SELF-IDENTITYAnnual Review of Microbiology, 50
S. Dey, T. Maiti, B. Bhattacharyya (1994)
Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorizationApplied and Environmental Microbiology, 60
By Faix (1991)
Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy, 45
Wariishi (1989)
10.1016/S0021-9258(18)94070-6J. Biol. Chem., 264
H. Hsueh, H. Chu, C. Chang (2007)
Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon.Environmental science & technology, 41 6
C. Faulds, M. Ralet, G. Williamson, G. Hazlewood, H. Gilbert (1995)
Specificity of an esterase (XYLD) from Pseudomonas fluorescens subsp. cellulosa.Biochimica et biophysica acta, 1243 2
D. Pieper (2005)
Aerobic degradation of polychlorinated biphenylsApplied Microbiology and Biotechnology, 67
P. Kersten, D. Cullen (2007)
Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium.Fungal genetics and biology : FG & B, 44 2
M. Gasson, Y. Kitamura, W. McLauchlan, A. Narbad, A. Parr, E. Parsons, J. Payne, M. Rhodes, N. Walton (1998)
Metabolism of Ferulic Acid to VanillinThe Journal of Biological Chemistry, 273
K. Kishi, N. Habu, M. Samejima, T. Yoshimoto (1991)
Purification and Some Properties of the Enzyme Catalyzing the Cγ-Elimination of a Diarylpropane-type Lignin Model from Pseudomonas paucimobilis TMY1009Agricultural and biological chemistry, 55
Leif Jönsson, Kjell Sjöström, Ingrid Häggström, Per-Olof Nyman (1995)
Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases.Biochimica et biophysica acta, 1251 2
T. Bugg, Mark Ahmad, E. Hardiman, Rahul Singh (2011)
The emerging role for bacteria in lignin degradation and bio-product formation.Current opinion in biotechnology, 22 3
H. Priefert, J. Rabenhorst, A. Steinbüchel (1997)
Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuateJournal of Bacteriology, 179
L. Banci, S. Ciofi‐Baffoni, M. Tien (1999)
Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers.Biochemistry, 38 10
S. Adav, C. Ng, M. Arulmani, S. Sze (2010)
Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca.Journal of proteome research, 9 6
E. Masai, A. Ichimura, Y. Sato, K. Miyauchi, Y. Katayama, M. Fukuda (2003)
Roles of the Enantioselective Glutathione S-Transferases in Cleavage of β-Aryl EtherJournal of Bacteriology, 185
A. Wymelenberg, J. Gaskell, M. Mozuch, G. Sabat, J. Ralph, O. Skyba, S. Mansfield, R. Blanchette, Diego Martínez, I. Grigoriev, P. Kersten, D. Cullen (2010)
Comparative Transcriptome and Secretome Analysis of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporiumApplied and Environmental Microbiology, 76
K. Hammel, K. Jensen, M. Mozuch, L. Landucci, M. Tien, E. Pease (1993)
Ligninolysis by a purified lignin peroxidase.The Journal of biological chemistry, 268 17
A. Raj, M. Reddy, Ram Chandra (2007)
Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp.International Biodeterioration & Biodegradation, 59
Sundaramoorthy (1994)
10.1016/S0021-9258(20)30056-9J. Biol. Chem., 269
C. Faulds, G. Williamson (1994)
Purification and characterization of a ferulic acid esterase (FAE-III) from Aspergillus niger: Specificity for the phenolic moiety and binding to microcrystalline celluloseMicrobiology, 140
A. Grandy, Jason Neff, M. Weintraub (2007)
Carbon structure and enzyme activities in alpine and forest ecosystemsSoil Biology & Biochemistry, 39
Tomokuni Abe, E. Masai, K. Miyauchi, Y. Katayama, M. Fukuda (2005)
A Tetrahydrofolate-Dependent O-Demethylase, LigM, Is Crucial for Catabolism of Vanillate and Syringate in Sphingomonas paucimobilis SYK-6Journal of Bacteriology, 187
J. Bumpus, S. Aust (1987)
Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: Involvement of the lignin degrading systemBioEssays, 6
M. Sundaramoorthy, K. Kishi, M. Gold, T. Poulos (1994)
The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution.The Journal of biological chemistry, 269 52
Xue-Ping Peng, Takashi Egashira, K. Hanashiro, E. Masai, S. Nishikawa, Y. Katayama, K. Kimbara, M. Fukuda (1998)
Cloning of a Sphingomonas paucimobilis SYK-6 Gene Encoding a Novel Oxygenase That Cleaves Lignin-Related Biphenyl and Characterization of the EnzymeApplied and Environmental Microbiology, 64
L. Candeias, P. Harvey (1995)
Lifetime and Reactivity of the Veratryl Alcohol Radical Cation.The Journal of Biological Chemistry, 270
Chen‐Loung Chen, Hou‐min Chang, T. Kirk (1982)
Aromatic Acids Produced during Degradation of Lignin in Spruce Wood by Phanerochaete Chrysosporium, 36
T. Bertrand, C. Jolivalt, P. Briozzo, E. Caminade, N. Joly, C. Madzak, C. Mougin (2002)
Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.Biochemistry, 41 23
R. Bourbonnais, M. Paice (1990)
Oxidation of non‐phenolic substratesFEBS Letters, 267
Bugg (2003)
10.1016/S0040-4020(03)00944-XTetrahedron, 59
Jeewon Lee (1997)
Biological conversion of lignocellulosic biomass to ethanol.Journal of biotechnology, 56 1
Chen‐Loung Chen, Hou‐min Chang, T. Kirk (1983)
Carboxylic Acids Produced Through Oxidative Cleavage of Aromatic Rings During Degradation of Lignin in Spruce Wood by Phanerochaete ChrysosporiumJournal of Wood Chemistry and Technology, 3
M. Niku‐Paavola, E. Karhunen, A. Kantelinen, L. Viikari, T. Lundell, A. Hatakka (1990)
The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiataJournal of Biotechnology, 13
P. Giardina, V. Faraco, Cinzia Pezzella, Alessandra Piscitelli, S. Vanhulle, G. Sannia (2010)
Laccases: a never-ending storyCellular and Molecular Life Sciences, 67
Y. Otsuka, T. Sonoki, S. Ikeda, S. Kajita, M. Nakamura, Y. Katayama (2003)
Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol beta-aryl ether linkages.European journal of biochemistry, 270 11
D. Cai, M. Tien (1993)
Lignin-degrading peroxidases of Phanerochaete chrysosporium.Journal of biotechnology, 30 1
V. Gómez-Toribio, A. García-Martín, M. Martínez, Angel Martı́nez, F. Guillén (2009)
Induction of Extracellular Hydroxyl Radical Production by White-Rot Fungi through Quinone Redox CyclingApplied and Environmental Microbiology, 75
D. Kridelbaugh, S. Hughes, T. Allen, K. Doerner (2009)
Production of 4‐ethylphenol from 4‐hydroxycinnamic acid by Lactobacillus sp. isolated from a swine waste lagoonJournal of Applied Microbiology, 109
H. Hara, E. Masai, K. Miyauchi, Y. Katayama, M. Fukuda (2003)
Characterization of the 4-Carboxy-4-Hydroxy-2-Oxoadipate Aldolase Gene and Operon Structure of the Protocatechuate 4,5-Cleavage Pathway Genes in Sphingomonas paucimobilis SYK-6Journal of Bacteriology, 185
T. Sonoki, Takahiro Obi, S. Kubota, Motoo Higashi, E. Masai, Y. Katayama (2000)
Coexistence of Two Different O Demethylation Systems in Lignin Metabolism by Sphingomonas paucimobilis SYK-6: Cloning and Sequencing of the Lignin Biphenyl-Specific O-Demethylase (LigX) GeneApplied and Environmental Microbiology, 66
V. Venturi, Francesca Zennaro, G. Degrassi, B. Okeke, Carlo Bruschi (1998)
Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358.Microbiology, 144 ( Pt 4)
G. Giuliano, S. Al‐Babili, J. Lintig (2003)
Carotenoid oxygenases: cleave it or leave it.Trends in plant science, 8 4
Muralidhara Ramachandra, D. Crawford, G. Hertel, D. Crawford (1988)
Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporusApplied and Environmental Microbiology, 54
I. Bento, Catarina Silva, Zhenjia Chen, L. Martins, P. Lindley, C. Soares (2010)
Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transferBMC Structural Biology, 10
Angel Martı́nez, M. Speranza, F. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. Martínez, A. Gutiérrez, J. Río (2005)
Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin.International microbiology : the official journal of the Spanish Society for Microbiology, 8 3
K. Jensen, C. Houtman, Z. Ryan, K. Hammel (2001)
Pathways for Extracellular Fenton Chemistry in the Brown Rot Basidiomycete Gloeophyllum trabeumApplied and Environmental Microbiology, 67
F. Cui, D. Dolphin (1995)
Iron porphyrin catalyzed oxidation of lignin model compounds: oxidation of phenylpropane and phenylpropene model compoundsCanadian Journal of Chemistry, 73
Xue-Ping Peng, E. Masai, Y. Katayama, M. Fukuda (1999)
Characterization of the meta-Cleavage Compound Hydrolase Gene Involved in Degradation of the Lignin-Related Biphenyl Structure by Sphingomonas paucimobilisSYK-6Applied and Environmental Microbiology, 65
Diego Martínez, L. Larrondo, N. Putnam, N. Putnam, M. Gelpke, Katherine Huang, Jarrod Chapman, Jarrod Chapman, Kevin Helfenbein, Preethi Ramaiya, J. Detter, F. Larimer, P. Coutinho, B. Henrissat, R. Berka, D. Cullen, D. Rokhsar (2004)
Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78Nature Biotechnology, 22
Joseph Zakzeski, P. Bruijnincx, A. Jongerius, B. Weckhuysen (2010)
The catalytic valorization of lignin for the production of renewable chemicals.Chemical reviews, 110 6
T. Kirk, R. Ibach, M. Mozuch, A. Conner, L. Highley (1991)
Characteristics of Cotton Cellulose Depolymerized by a Brown-Rot Fungus, by Acid, or by Chemical Oxidants, 45
W. Zimmermann (1990)
Degradation of lignin by bacteriaJournal of Biotechnology, 13
S. Kamoda, Y. Saburi (1993)
Structural and Enzymatical Comparison of Lignostilbene-α,β-dioxygenase Isozymes, I, II, and III, from Pseudomonas paucimobilis TMY1009Bioscience, Biotechnology, and Biochemistry, 57
Joseph Roberts, Rahul Singh, J. Grigg, Michael Murphy, T. Bugg, L. Eltis (2011)
Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1.Biochemistry, 50 23
Z. Kerem, K. Jensen, K. Hammel (1999)
Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone‐driven fenton reactionFEBS Letters, 446
J. Pollard, T. Bugg (1998)
Purification, characterisation and reaction mechanism of monofunctional 2-hydroxypentadienoic acid hydratase from Escherichia coli.European journal of biochemistry, 251 1-2
Gary Williamson, Paul Kroon, C. Faulds (1998)
Hairy plant polysaccharides: a close shave with microbial esterases.Microbiology, 144 ( Pt 8)
Vishal Gupta, A. Minocha, N. Jain (2001)
Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicansJournal of Chemical Technology & Biotechnology, 76
S. Achterholt, H. Priefert, A. Steinbüchel (2000)
Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillinApplied Microbiology and Biotechnology, 54
T. Kirk, R. Farrell (1987)
Enzymatic "combustion": the microbial degradation of lignin.Annual review of microbiology, 41
Mark Ahmad, Charles Taylor, D. Pink, K. Burton, D. Eastwood, G. Bending, T. Bugg (2010)
Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders.Molecular bioSystems, 6 5
K. Maruyama, M. Miwa, Nobuyuki Tsujii, Tomoyuki Nagai, Naotaka Tomita, T. Harada, H. SoBAJiMA, H. Sugisaki (2001)
Cloning, Sequencing, and Expression of the Gene Encoding 4-Hydroxy-4-methyl-2-oxoglutarate Aldolase from Pseudomonas ochraceae NGJ1Bioscience, Biotechnology, and Biochemistry, 65
K. Sugimoto, T. Senda, Hisae Aoshima, E. Masai, Masao Fukuda, Yukio Mitsui (1999)
Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions.Structure, 7 8
H. Bermek, Kaichang Li, K. Eriksson (1998)
Laccase-less mutants of the white-rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulpJournal of Biotechnology, 66
P. Martone, J. Estevez, F. Lu, K. Ruel, Mark Denny, C. Somerville, J. Ralph (2009)
Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall ArchitectureCurrent Biology, 19
T. Eggeman, R. Elander (2005)
Process and economic analysis of pretreatment technologies.Bioresource technology, 96 18
Y. Noda, S. Nishikawa, Kouichi Shiozuka, Hiroshi Kadokura, Harushi Nakajima, Koji Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, Makari Yamasaki (1990)
Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilisJournal of Bacteriology, 172
S. Shleev, P. Persson, G. Shumakovich, Yulia Mazhugo, A. Yaropolov, T. Ruzgas, L. Gorton (2006)
Interaction of fungal laccases and laccase-mediator systems with ligninEnzyme and Microbial Technology, 39
M. Brown, Mark Walker, Toshiki Nakashige, A. Iavarone, M. Chang (2011)
Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation.Journal of the American Chemical Society, 133 45
Shingo Kawai, T. Umezawa, Takayoshi Higuchi (1988)
Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor.Archives of biochemistry and biophysics, 262 1
Covering: up to 2011 Lignin is a heterogeneous aromatic polymer found as 10–35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.
Natural Product Reports – Royal Society of Chemistry
Published: Nov 15, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.