Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast 1 1 2 1,3 Catherine B. Millar, Feng Xu, Kangling Zhang, and Michael Grunstein Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA; Mass Spectrometry Facility, Department of Chemistry, University of California, Riverside, California 92521, USA Histone variants and their post-translational modifications help regulate chromosomal functions. Htz1 is an evolutionarily conserved H2A variant found at several promoters in the yeast Saccharomyces cerevisiae.In this study, we undertook a genome-wide analysis of Htz1 and its modifications in yeast. Using mass spectrometric analysis, we determined that Htz1 is acetylated at Lys 3, Lys 8, Lys 10, and Lys 14 within its N-terminal tail, with K14 being the most abundant acetylated site. ChIP and microarray analysis were then used to compare the location of Htz1-K14 acetylation to that of Htz1 genome-wide. The data presented here demonstrate that while Htz1 is associated preferentially with the promoters of repressed genes, K14 acetylation is enriched at the promoters of active genes, and requires two known histone
Genes & Development – Unpaywall
Published: Mar 15, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.