Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Yim, P. Chock, E. Stadtman (1993)
Enzyme function of copper, zinc superoxide dismutase as a free radical generator.The Journal of biological chemistry, 268 6
J. Beckman, M. Carson, Craig Smith, W. Koppenol (1993)
ALS, SOD and peroxynitriteNature, 364
A. Estevez, J. Crow, J. Sampson, C. Reiter, Y. Zhuang, G. Richardson, M. Tarpey, L. Barbeito, J. Beckman (1999)
Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase.Science, 286 5449
C. Vijayvergiya, M. Beal, J. Buck, G. Manfredi (2005)
Mutant Superoxide Dismutase 1 Forms Aggregates in the Brain Mitochondrial Matrix of Amyotrophic Lateral Sclerosis MiceThe Journal of Neuroscience, 25
H. Yim, Jung-Hoon Kang, P. Chock, E. Stadtman, M. Yim (1997)
A Familial Amyotrophic Lateral Sclerosis-associated A4V Cu,Zn-Superoxide Dismutase Mutant Has a Lower Km for Hydrogen PeroxideThe Journal of Biological Chemistry, 272
C. Cheroni, M. Peviani, P. Cascio, Silvia DeBiasi, C. Monti, Caterina Bendotti (2005)
Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasomeNeurobiology of Disease, 18
Jiou Wang, Guilian Xu, V. Gonzales, M. Coonfield, David Fromholt, N. Copeland, N. Jenkins, D. Borchelt (2002)
Fibrillar Inclusions and Motor Neuron Degeneration in Transgenic Mice Expressing Superoxide Dismutase 1 with a Disrupted Copper-Binding SiteNeurobiology of Disease, 10
A. Pramatarova, Janet Laganière, J. Roussel, K. Brisebois, G. Rouleau (2001)
Neuron-Specific Expression of Mutant Superoxide Dismutase 1 in Transgenic Mice Does Not Lead to Motor ImpairmentThe Journal of Neuroscience, 21
Yasuhiro Watanabe, K. Yasui, Toshiya Nakano, K. Doi, Yasuyo Fukada, M. Kitayama, M. Ishimoto, S. Kurihara, Mika Kawashima, Hiroki Fukuda, Y. Adachi, Takao Inoué, K. Nakashima (2005)
Mouse motor neuron disease caused by truncated SOD1 with or without C-terminal modification.Brain research. Molecular brain research, 135 1-2
L. Bruijn, M. Houseweart, S. Kato, K. Anderson, Scott Anderson, E. Ohama, A. Reaume, Rick Scott, D. Cleveland (1998)
Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1.Science, 281 5384
M. Gurney, Haifeng (Pu), A. Chiu, M. Canto, C. Polchow, D. Alexander, J. Caliendo, A. Hentati, Y. Kwon, H. Deng (1994)
Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.Science, 264 5166
Xiaolei Sun, P. Moriarty, L. Maquat (2000)
Nonsense‐mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm depends on intron positionThe EMBO Journal, 19
M. Wiedau-Pazos, J. Goto, S. Rabizadeh, E. Gralla, J. Roe, Michael Lee, J. Valentine, D. Bredesen (1996)
Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral SclerosisScience, 271
M. Yim, P. Chock, E. Stadtman (1990)
Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide.Proceedings of the National Academy of Sciences of the United States of America, 87 13
Jiou Wang, H. Slunt, V. Gonzales, David Fromholt, M. Coonfield, N. Copeland, N. Jenkins, D. Borchelt (2003)
Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature.Human molecular genetics, 12 21
L. Maquat (1995)
When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells.RNA, 1 5
D. Borchelt, P. Wong, M. Becher, C. Pardo, Michael Lee, Zuoshang Xu, G. Thinakaran, N. Jenkins, N. Copeland, S. Sisodia, D. Cleveland, D. Price, P. Hoffman (1998)
Axonal Transport of Mutant Superoxide Dismutase 1 and Focal Axonal Abnormalities in the Proximal Axons of Transgenic MiceNeurobiology of Disease, 5
A. Clement, Minh Nguyen, E. Roberts, E. Roberts, M. Garcia, M. Garcia, S. Boillée, S. Boillée, M. Rule, A. McMahon, Wilder Doucette, D. Siwek, R. Ferrante, Robert Brown, J. Julien, Lawrence Goldstein, Lawrence Goldstein, D. Cleveland, Don Cleveland (2003)
Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS MiceScience, 302
Y. Koyama, J. Goldman (1999)
Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by alphaB-crystallin.The American journal of pathology, 154 5
H. Tummala, C. Jung, A. Tiwari, Cynthia Higgins, L. Hayward, Zuoshang Xu (2005)
Inhibition of Chaperone Activity Is a Shared Property of Several Cu,Zn-Superoxide Dismutase Mutants That Cause Amyotrophic Lateral Sclerosis*Journal of Biological Chemistry, 280
D. Borchelt, Michael Lee, H. Slunt, M. Guarnieri, Zuoshang Xu, P. Wong, Robert Brown, D. Price, S. Sisodia, D. Cleveland (1994)
Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity.Proceedings of the National Academy of Sciences of the United States of America, 91 17
A. Tanksale, M. Ghatge, V. Deshpande (2002)
α‐Crystallin binds to the aggregation‐prone molten‐globule state of alkaline protease: Implications for preventing irreversible thermal denaturationProtein Science, 11
D. Borchelt, Michael Guarnieri, P. Wong, Michael Lee, H. Slunt, Zuoshang Xu, S. Sisodia, D. Price, D. Cleveland (1995)
Superoxide Dismutase 1 Subunits with Mutations Linked to Familial Amyotrophic Lateral Sclerosis Do Not Affect Wild-type Subunit Function (*)The Journal of Biological Chemistry, 270
V. Vleminckx, P. Damme, K. Goffin, H. Delye, L. Bosch, W. Robberecht (2002)
Upregulation of HSP27 in a Transgenic Model of ALSJNEN: Journal of Neuropathology & Experimental Neurology, 61
Jian Liu, C. Lillo, P. Jonsson, C. Velde, Chris Ward, T. Miller, J. Subramaniam, J. Rothstein, S. Marklund, P. Andersen, T. Brännström, O. Gredal, P. Wong, David Williams, D. Cleveland (2004)
Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal MitochondriaNeuron, 43
T. Ratovitski, L. Corson, J. Strain, P. Wong, D. Cleveland, V. Culotta, D. Borchelt (1999)
Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds.Human molecular genetics, 8 8
L. Bruijn, M. Becher, Michael Lee, K. Anderson, N. Jenkins, N. Copeland, S. Sisodia, J. Rothstein, D. Borchelt, D. Price, D. Cleveland (1997)
ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing InclusionsNeuron, 18
P. Wong, C. Pardo, D. Borchelt, Michael Lee, N. Copeland, N. Jenkins, S. Sisodia, D. Cleveland, D. Price (1995)
An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondriaNeuron, 14
P. Pasinelli, Mary Belford, N. Lennon, B. Bacskai, B. Hyman, D. Trotti, Robert Brown (2004)
Amyotrophic Lateral Sclerosis-Associated SOD1 Mutant Proteins Bind and Aggregate with Bcl-2 in Spinal Cord MitochondriaNeuron, 43
Glyn Devlin, J. Carver, S. Bottomley (2003)
The Selective Inhibition of Serpin Aggregation by the Molecular Chaperone, α-Crystallin, Indicates a Nucleation-dependent Specificity*Journal of Biological Chemistry, 278
Dr. Biswas, K. Das (2004)
Role of ATP on the Interaction of α-Crystallin with Its Substrates and Its Implications for the Molecular Chaperone Function*Journal of Biological Chemistry, 279
A. Spector, Lu-Ku Li, D. Meretsky, R. Augusteyn (1971)
What is alpha crystallin?American journal of ophthalmology, 71 1 Pt 2
H. Sathish, R. Stein, Guangyong Yang, H. Mchaourab (2003)
Mechanism of Chaperone Function in Small Heat-shock ProteinsJournal of Biological Chemistry, 278
M. Kumar, M. Kapoor, Sharmistha Sinha, G. Reddy (2005)
Insights into Hydrophobicity and the Chaperone-like Function of αA- and αB-crystallinsJournal of Biological Chemistry, 280
M. Watanabe, M. Dykes‐Hoberg, V. Culotta, D. Price, P. Wong, J. Rothstein (2001)
Histological Evidence of Protein Aggregation in Mutant SOD1 Transgenic Mice and in Amyotrophic Lateral Sclerosis Neural TissuesNeurobiology of Disease, 8
M. Haine, N. Meeùs (1986)
Van Damme A.
M. Kumar, M. Kapoor, Sharmistha Sinha, G. Reddy (2005)
Insights into hydrophobicity and the chaperone-like function of alphaA- and alphaB-crystallins: an isothermal titration calorimetric study.The Journal of biological chemistry, 280 23
L. Maquat, G. Carmichael (2001)
Quality Control of mRNA FunctionCell, 104
J. Elam, Alexander Taylor, R. Strange, S. Antonyuk, P. Doucette, Jorge Rodriguez, S. Hasnain, L. Hayward, Joan Valentine, Todd Yeates, P. Hart (2003)
Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALSNature Structural Biology, 10
L. Kumar, C. Rao (2000)
Domain swapping in human alpha A and alpha B crystallins affects oligomerization and enhances chaperone-like activity.The Journal of biological chemistry, 275 29
F. Narberhaus (2002)
α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone NetworkMicrobiology and Molecular Biology Reviews, 66
J. Crow, Y. Ye, M. Strong, M. Kirk, S. Barnes, J. Beckman (1997)
Superoxide Dismutase Catalyzes Nitration of Tyrosines by Peroxynitrite in the Rod and Head Domains of Neurofilament‐LJournal of Neurochemistry, 69
M. McKinley, K. Rudolf, Meyer, Leah, Kenaga, Fonda, Rahbar, Anna Serban, Stanley PRUSINERl (1991)
Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysisJournal of Virology, 65
M. Lino, C. Schneider, P. Caroni (2002)
Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron DiseaseThe Journal of Neuroscience, 22
Jiou Wang, Guilian Xu, D. Borchelt (2002)
High Molecular Weight Complexes of Mutant Superoxide Dismutase 1: Age-Dependent and Tissue-Specific AccumulationNeurobiology of Disease, 9
J. Subramaniam, W. Lyons, Jian Liu, T. Bartnikas, J. Rothstein, Donald Price, Don Cleveland, Jonathan Gitlin, Philip Wong (2002)
Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loadingNature Neuroscience, 5
A. Reaume, J. Elliott, E. Hoffman, N. Kowall, R. Ferrante, Donald Siwek, H. Wilcox, D. Flood, M. Beal, Robert Brown, R. Scott, W. Snider (1996)
Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injuryNature Genetics, 13
J. Neurochem
J. Valentine, P. Hart (2003)
Misfolded CuZnSOD and amyotrophic lateral sclerosisProceedings of the National Academy of Sciences of the United States of America, 100
P. Jonsson, Karin Ernhill, Peter Andersen, D. Bergemalm, T. Brännström, O. Gredal, P. Nilsson, S. Marklund (2004)
Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis.Brain : a journal of neurology, 127 Pt 1
L. Kumar, C. Rao (2000)
Domain Swapping in Human αA and αB Crystallins Affects Oligomerization and Enhances Chaperone-like Activity*The Journal of Biological Chemistry, 275
Moon Bin, Yim, JUNG-HOON, KANGt, Hyung-Soon, HAHN-SHIK, KWAKt, E. Stadtman (1996)
A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide.Proceedings of the National Academy of Sciences of the United States of America, 93 12
J. Johnston, Muffie Dalton, M. Gurney, R. Kopito (2000)
Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis.Proceedings of the National Academy of Sciences of the United States of America, 97 23
James Zu, H. Deng, T. Lo, H. Mitsumoto, M. Ahmed, W. Hung, Z. Cai, J. Tainer, T. Siddique (1997)
Exon 5 encoded domain is not required for the toxic function of mutant SOD1 but essential for the dismutase activity: identification and characterization of two new SOD1 mutations associated with familial amyotrophic lateral sclerosisNeurogenetics, 1
Mice expressing variants of superoxide dismutase-1 (SOD1) encoding C-terminal truncation mutations linked to familial amyotrophic lateral sclerosis (FALS) have begun to define the role of misfolding and aggregation in the pathogenesis of disease. Here, we examine transgenic mice expressing SOD1-L126Z (Z=stop-truncation of last 28 amino acids), finding that detergent-insoluble mutant protein specifically accumulates in somatodendritic compartments. Soluble forms of the SOD1-L126Z were virtually undetectable in spinal cord at any age and the levels of accumulated protein directly correlated with disease symptoms. Neither soluble nor insoluble forms of SOD1-L126Z were transported to distal axons. In vitro, small heat shock protein (Hsp) αB-crystallin suppressed the in vitro aggregation of SOD1-L126Z. In vivo, αB-crystallin immunoreactivity was most abundant in oligodendrocytes and up-regulated in astrocytes of symptomatic mice; neither of these cell-types accumulated mutant SOD1 immunoreactivity. These results suggest that damage to motor neuron cell bodies and dendrites within the spinal cord can be sufficient to induce motor neuron disease and that the activities of chaperones may modulate the cellular specificity of mutant SOD1 accumulation.
Human Molecular Genetics – Oxford University Press
Published: Aug 15, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.