Access the full text.
Sign up today, get DeepDyve free for 14 days.
(2012)
IEEE Photonics Technology Letters 24
(2014)
Light: Science &Amp; Applications 3
T. Fortier, M. Kirchner, F. Quinlan, Jacob Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Yanyi Jiang, C. Oates, S. Diddams (2011)
Generation of ultrastable microwaves via optical frequency divisionNature Photonics, 5
(1974)
Applied Physics Letters 25
C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, Tatsuhiko Watanabe, Tong Cui, B. Cheng, S. Saha, D. Elder, L. Dalton, A. Boltasseva, V. Shalaev, N. Kinsey, J. Leuthold (2018)
Low loss Plasmon-assisted electro-optic modulatorNature, 556
M Streshinsky (2013)
Low power 50 Gb/s silicon traveling wave Mach–Zehnder modulator near 1300 nmOpt. Express, 21
Luqi Yuan, Meng Xiao, Qian Lin, S. Fan (2017)
Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulationPhysical Review B, 97
A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, S. Fathpour (2016)
High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz.Optics letters, 41 24
Yichen Shen, N. Harris, S. Skirlo, Mihika Prabhu, T. Baehr‐Jones, M. Hochberg, Xin Sun, Shijie Zhao, H. Larochelle, D. Englund, M. Soljačić (2016)
Deep learning with coherent nanophotonic circuitsNature Photonics, 11
Li Chen, Qiang Xu, M. Wood, R. Reano (2014)
Hybrid silicon and lithium niobate electro-optical ring modulator, 1
(2015)
Optics Express 23
IEEE Journal of Selected Topics in Quantum Electronics
IEEE Journal of Selected Topics in Quantum Electronics
P. Dong, Xiang Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Young-Kai Chen (2014)
Monolithic Silicon Photonic Integrated Circuits for Compact 100 $^{+}$Gb/s Coherent Optical Receivers and TransmittersIEEE Journal of Selected Topics in Quantum Electronics, 20
(2007)
Science 318
Mian Zhang, Cheng Wang, Rebecca Cheng, A. Shams-Ansari, M. Lončar (2017)
Monolithic ultra-high-Q lithium niobate microring resonator, 4
S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. Schindler, Hui Yu, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, C. Koos (2015)
Femtojoule electro-optic modulation using a silicon–organic hybrid deviceLight: Science & Applications, 4
D. Miller (2015)
Sorting out lightScience, 347
K. Barraclough (2001)
I and iBMJ : British Medical Journal, 323
L. Wooten, K. Kissa, A. Yi-yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, Daniel Attanasio, D. Fritz, G. McBrien, D. Bossi (2000)
A review of lithium niobate modulators for fiber-optic communications systemsIEEE Journal of Selected Topics in Quantum Electronics, 6
(2014)
Optica 1
(2015)
Nat Photon 9
G. Poberaj, Huiying Hu, W. Sohler, P. Günter (2012)
Lithium niobate on insulator (LNOI) for micro‐photonic devicesLaser & Photonics Reviews, 6
Xi Chen, S. Chandrasekhar, G. Raybon, P. Dong, Borui Li, A. Adamiecki, P. Winzer (2017)
Characterization of electro-optic bandwidth of ultra-high speed modulators2017 Optical Fiber Communications Conference and Exhibition (OFC)
Zongfu Yu, S. Fan (2008)
Complete optical isolation created by indirect interband photonic transitions, 7220
L. Tzuang, K. Fang, P. Nussenzveig, S. Fan, M. Lipson (2014)
Non-reciprocal phase shift induced by an effective magnetic flux for lightNature Photonics, 8
P. Winzer, R. Essiambre (2006)
Advanced Optical Modulation FormatsProceedings of the IEEE, 94
and P
(2015)
Nature 528
M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. Elder, L. Dalton, J. Leuthold (2017)
High-speed plasmonic modulator in a single metal layerScience, 358
Mark Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, D. McGee (2002)
Broadband Modulation of Light by Using an Electro-Optic PolymerScience, 298
S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. Driesch, Juliana Müller, S. Mantl, D. Buca, J. Witzens (2015)
Low V(π) Silicon photonics modulators with highly linear epitaxially grown phase shifters.Optics express, 23 18
R. Schmidt, I. Kaminow (1974)
Metal‐diffused optical waveguides in LiNbO3Applied Physics Letters, 25
G. Reed, G. Mashanovich, F. Gardes, D. Thomson (2010)
Silicon optical modulatorsNature Photonics, 4
S. Wolf, H. Zwickel, C. Kieninger, M. Lauermann, W. Hartmann, Y. Kutuvantavida, W. Freude, Sebastian Randel, C. Koos (2017)
Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices.Optics express, 26 1
M. Streshinsky, R. Ding, A. Novack, Yang Liu, X. Tu, A. Lim, E. Chen, P. Lo, T. Jones, M. Hochberg (2013)
50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nmOFC 2014
E. Rouvalis (2015)
Indium Phosphide Based IQ-Modulators for Coherent Pluggable Optical Transceivers2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
J. O'Brien (2007)
Optical Quantum ComputingScience, 318
Chen Sun, M. Wade, Yunsup Lee, J. Orcutt, L. Alloatti, M. Georgas, Andrew Waterman, J. Shainline, Rimas Avizienis, Sen Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, Henry Cook, Albert Ou, J. Leu, Yu-hsin Chen, K. Asanović, Rajeev Ram, M. Popović, V. Stojanović (2015)
Single-chip microprocessor that communicates directly using lightNature, 528
M. Aoki, Makoto Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, A. Takai (1993)
InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVDIEEE Journal of Quantum Electronics, 29
Xi Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, P. Winzer (2016)
All-Electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190 GBaudJournal of Lightwave Technology, 35
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, Lukas Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. Dalton, C. Hafner, J. Leuthold (2015)
All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscaleNature Photonics, 9
Andrew Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, D. Prather (2016)
110 GHz CMOS compatible thin film LiNbO3 modulator on silicon.Optics express, 24 14
P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, A. Bogoni (2014)
A fully photonics-based coherent radar systemNature, 507
S. Jin, L. Xu, Haihua Zhang, Yifei Li (2016)
LiNbO3 Thin-Film Modulators Using Silicon Nitride Surface Ridge WaveguidesIEEE Photonics Technology Letters, 28
RW Boyd (2003)
Nonlinear Optics
L. Alloatti, R. Palmer, S. Diebold, K. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fédéli, T. Zwick, W. Freude, C. Koos, J. Leuthold (2014)
100 GHz silicon–organic hybrid modulatorLight: Science & Applications, 3
Qianfan Xu, B. Schmidt, S. Pradhan, M. Lipson (2005)
Micrometre-scale silicon electro-optic modulatorNature, 435
O. Castro-Orgaz, W. Hager (2019)
and sShallow Water Hydraulics
Cheng Wang, Mian Zhang, B. Stern, M. Lipson, M. Lončar (2017)
Nanophotonic lithium niobate electro-optic modulators.Optics express, 26 2
G. Letal, K. Prosyk, R. Millett, D. Macquistan, S. Paquet, Olivier Thibault-Maheu, J.-F. Gagné, Pierre-Louis Fortin, R. Dowlatshahi, B. Rioux, Tony SpringThorpe, M. Hisko, R. Ma, I. Woods (2015)
Low loss InP C-band IQ modulator with 40GHz bandwidth and 1.5V Vπ2015 Optical Fiber Communications Conference and Exhibition (OFC)
(2009)
Laser Photonics Rev
Jie Wang, Fang Bo, Shuai Wan, Wuxia Li, F. Gao, Junjie Li, Guoquan Zhang, Jingjun Xu (2015)
High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation.Optics express, 23 18
Hanxiao Liang, Rui Luo, Yang He, Haowei Jiang, Q. Lin (2017)
High-quality lithium niobate photonic crystal nanocavitiesarXiv: Optics
Y. Ogiso, J. Ozaki, Y. Ueda, N. Kashio, N. Kikuchi, E. Yamada, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, M. Kohtoku (2017)
Over 67 GHz Bandwidth and 1.5 V Vπ InP-Based Optical IQ Modulator With n-i-p-n HeterostructureJournal of Lightwave Technology, 35
D. Thomson, F. Gardes, J. Fédéli, S. Zlatanović, Youfang Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, G. Reed (2012)
50-Gb/s Silicon Optical ModulatorIEEE Photonics Technology Letters, 24
D. Miller (2016)
Attojoule Optoelectronics for Low-Energy Information Processing and CommunicationsJournal of Lightwave Technology, 35
Type Half-wave voltage On-chip loss Reference
Neil Genzlinger (2006)
A. and QNew York Times Book Review
M. Kues, C. Reimer, P. Roztocki, L. Cortés, S. Sciara, B. Wetzel, Yanbing Zhang, A. Cino, S. Chu, B. Little, D. Moss, L. Caspani, J. Azaña, R. Morandotti (2017)
On-chip generation of high-dimensional entangled quantum states and their coherent controlNature, 546
D. Janner, D. Tulli, Miguel Garc´ıa-Granda, M. Belmonte, V. Pruneri (2009)
Micro‐structured integrated electro‐optic LiNbO3 modulatorsLaser & Photonics Reviews, 3
Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks 1,2 and microwave-photonic systems 3,4 . They are also expected to be building blocks for emerging applications such as quantum photonics 5,6 and non-reciprocal optics 7,8 . All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal–oxide–semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades 9 , have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications 5,10,11 including feed-forward photonic quantum computation.
Nature – Springer Journals
Published: Sep 24, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.