Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract 1. We studied graded synaptic transmission in the fly photoreceptor-interneuron synapse by using intracellular in situ recordings from pre- and postsynaptic cells. 2. A large presynaptic hyperpolarization after light adaptation, caused by the activation of the electrogenic Na+/K+ pump, drastically reduced the conspicuous postsynaptic dark noise. At the same time, the postsynaptic neurons depolarized, with an increase of input resistance of 5-10 M omega. 3. The spectral characteristics of the postsynaptic membrane noise in dark and during noise reduction, together with the other results, suggested that the transmitter release decreased dramatically approximately 12 mV below the resting potential of the presynaptic photoreceptors. 4. During the postsynaptic noise reduction, the saturated and subsaturated first-order visual interneuron responses were increased up to 9 mV with a time constant of recovery of approximately 10 s. This increase was shown to be caused by the negative shift of the reversal potential of the transmitter-gated (mainly Cl-) conductance, caused apparently by the reduced transmitter input. 5. The results strongly suggest that the photoreceptor transmitter release in fly is tonic, even in dark, and further support the modulation of the synaptic voltage transfer by postsynaptic Cl- extrusion. Copyright © 1995 the American Physiological Society
Journal of Neurophysiology – The American Physiological Society
Published: Jul 1, 1995
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.