Access the full text.
Sign up today, get DeepDyve free for 14 days.
Applied Mathematics and Computation
A. Mathai, R. Saxena, H. Haubold (2009)
The H-Function: Theory and Applications
R. Metzler, J. Klafter (2000)
The random walk's guide to anomalous diffusion: a fractional dynamics approachPhysics Reports, 339
M. Saxton, K. Jacobson (1997)
Single-particle tracking: applications to membrane dynamics.Annual review of biophysics and biomolecular structure, 26
R. Metzler, J. Klafter (2004)
The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamicsJournal of Physics A, 37
A. Chechkin, I. Sokolov, J. Klafter (2011)
Natural and Modified Forms of Distributed-Order Fractional Diffusion Equations
D. Molina-García, Trifce Sandev, H. Safdari, G. Pagnini, A. Chechkin, R. Metzler (2018)
Crossover from anomalous to normal diffusion: truncated power-law noise correlations and applications to dynamics in lipid bilayersNew Journal of Physics, 20
G. Ariel, A. Rabani, Sivan Benisty, Jonathan Partridge, R. Harshey, A. Be'er (2015)
Swarming bacteria migrate by Lévy WalkNature Communications, 6
(2013)
Fract. Calc. Appl. Anal. 16 297 24]
Trifce Sandev, A. Chechkin, H. Kantz, R. Metzler (2015)
Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory KernelFractional Calculus and Applied Analysis, 18
2018 Fract
R. Garrappa, F. Mainardi, Maione Guido (2016)
Models of dielectric relaxation based on completely monotone functionsFractional Calculus and Applied Analysis, 19
(2017)
Chaos Solitons & Fractals
Trifce Sandev, W. Deng, Pengbo Xu (2018)
Models for characterizing the transition among anomalous diffusions with different diffusion exponentsJournal of Physics A: Mathematical and Theoretical, 51
J. Masoliver, K. Lindenberg (2017)
Continuous time persistent random walk: a review and some generalizationsThe European Physical Journal B, 90
R. Garra, R. Gorenflo, F. Polito, Z. Tomovski (2014)
Hilfer-Prabhakar derivatives and some applicationsAppl. Math. Comput., 242
R. Garrappa (2016)
Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami modelsCommun. Nonlinear Sci. Numer. Simul., 38
A. Chechkin, R. Gorenflo, I. Physics, Kharkov, Ukraine Berlin, Germany Berlin, Germany Polymerphysik, Universitaet Freiburg, H Germany (2002)
Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations.Physical review. E, Statistical, nonlinear, and soft matter physics, 66 4 Pt 2
F. Mainardi (1996)
The fundamental solutions for the fractional diffusion-wave equationApplied Mathematics Letters, 9
G. Weiss (2002)
Some applications of persistent random walks and the telegrapher's equationPhysica A-statistical Mechanics and Its Applications, 311
T. Solomon, E. Weeks, H. Swinney (1993)
Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow.Physical review letters, 71 24
R. Metzler, A. Compte (1999)
Stochastic foundation of normal and anomalous Cattaneo-type transportPhysica A-statistical Mechanics and Its Applications, 268
Yasmine Meroz, I. Sokolov (2015)
A toolbox for determining subdiffusive mechanismsPhysics Reports, 573
A. Compte, R. Metzler (1997)
The generalized Cattaneo equation for the description of anomalous transport processesJournal of Physics A, 30
H. Scher, E. Montroll (1975)
Anomalous transit-time dispersion in amorphous solidsPhysical Review B, 12
R. Gorenflo, Yuri Luchko, M. Stojanović (2013)
Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability densityFractional Calculus and Applied Analysis, 16
(2002)
Physica A 311 381 [ 70 ] Wu XL and Libchaber A 2000
F. Mainardi (2010)
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
W. Young, A. Pumir, Y. Pomeau (1989)
Anomalous diffusion of tracer in convection rollsPhysics of Fluids, 1
M. Meerschaert, R. Schilling, A. Sikorskii (2015)
Stochastic solutions for fractional wave equationsNonlinear Dynamics, 80
A. Chechkin, V. Gonchar, R. Gorenflo, N. Korabel, Igor Sokolov (2008)
Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights.Physical review. E, Statistical, nonlinear, and soft matter physics, 78 2 Pt 1
Trifce Sandev, Z. Tomovski (2014)
Langevin equation for a free particle driven by power law type of noisesPhysics Letters A, 378
Yuri Luchko, F. Mainardi, Y. Povstenko (2012)
Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equationComput. Math. Appl., 66
V. Latora, Andrea Rapisarda, S. Ruffo (1999)
SUPERDIFFUSION AND OUT-OF-EQUILIBRIUM CHAOTIC DYNAMICS WITH MANY DEGREES OF FREEDOMSPhysical Review Letters, 83
Avi Caspi, R. Granek, M. Elbaum (2000)
Enhanced diffusion in active intracellular transport.Physical review letters, 85 26 Pt 1
(2014)
Phys. Chem. Chem. Phys. 16 24128 [46] Metzler R and Nonnemacher T F
R. Metzler, T. Nonnenmacher (1998)
FRACTIONAL DIFFUSION, WAITING-TIME DISTRIBUTIONS, AND CATTANEO-TYPE EQUATIONSPhysical Review E, 57
Trifce Sandev, R. Metzler, A. Chechkin (2018)
From continuous time random walks to the generalized diffusion equationFractional Calculus and Applied Analysis, 21
J. Masoliver (2016)
Fractional telegrapher's equation from fractional persistent random walks.Physical review. E, 93 5
W. Feller (1959)
An Introduction to Probability Theory and Its Applications
W. Schneider, W. Wyss (1989)
Fractional diffusion and wave equationsJournal of Mathematical Physics, 30
A. Kochubei (2009)
Distributed order derivatives and relaxation patternsJournal of Physics A: Mathematical and Theoretical, 42
E. Bazhlekova, I. Bazhlekov (2017)
Subordination approach to multi-term time-fractional diffusion-wave equationsJ. Comput. Appl. Math., 339
R. Metzler, Jae-Hyung Jeon, Andrey Cherstvy, E. Barkai (2014)
Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking.Physical chemistry chemical physics : PCCP, 16 44
(2010)
Bernstein Functions (Berlin: De Gruyter) [62] Schneider W R and Wyss W 1989
A. Mathai, R. Saxena, H. Haubold (2010)
The H-Function
D. Brockmann, L. Hufnagel, T. Geisel (2006)
The scaling laws of human travelNature, 439
I. Podlubny (1998)
Fractional differential equations
A. Liemert, Trifce Sandev, H. Kantz (2017)
Generalized Langevin equation with tempered memory kernelPhysica A-statistical Mechanics and Its Applications, 466
R. Gorenflo, F. Mainardi (2005)
Simply and multiply scaled diffusion limits for continuous time random walks, 7
E. Orsingher, L. Beghin (2004)
Time-fractional telegraph equations and telegraph processes with brownian timeProbability Theory and Related Fields, 128
A. Giusti, Ivano Colombaro (2017)
Prabhakar-like fractional viscoelasticityCommun. Nonlinear Sci. Numer. Simul., 56
F. Mainardi, G. Pagnini (2007)
The role of the Fox-Wright functions in fractional sub-diffusion of distributed orderJournal of Computational and Applied Mathematics, 207
J. Klafter, S. Lim, R. Metzler (2011)
Fractional dynamics : recent advances
Xiao-lun Wu, A. Libchaber (2000)
Particle diffusion in a quasi-two-dimensional bacterial bath.Physical review letters, 84 13
R. Garra, R. Garrappa (2017)
The Prabhakar or three parameter Mittag-Leffler function: Theory and applicationCommun. Nonlinear Sci. Numer. Simul., 56
V. Latora, Andrea Rapisarda, C. Tsallis (2001)
Non-Gaussian equilibrium in a long-range Hamiltonian system.Physical review. E, Statistical, nonlinear, and soft matter physics, 64 5 Pt 2
V. Bulavatsky (2017)
Mathematical Modeling of Fractional Differential Filtration Dynamics Based on Models with Hilfer–Prabhakar DerivativeCybernetics and Systems Analysis, 53
A. Stanislavsky, K. Weron, A. Weron (2008)
Diffusion and relaxation controlled by tempered alpha-stable processes.Physical review. E, Statistical, nonlinear, and soft matter physics, 78 5 Pt 1
Z. Tomovski, T. Pogány, H. Srivastava (2014)
Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicityJ. Frankl. Inst., 351
D. del-Castillo-Negrete, B. Carreras, V. Lynch (2004)
Nondiffusive transport in plasma turbulence: a fractional diffusion approach.Physical review letters, 94 6
(1999)
83 2104 ; Latora V , Rapisarda A and Tsallis C 2001
Trifce Sandev, A. Chechkin, N. Korabel, H. Kantz, I. Sokolov, R. Metzler (2015)
Distributed-order diffusion equations and multifractality: Models and solutions.Physical review. E, Statistical, nonlinear, and soft matter physics, 92 4
J. Masoliver, G. Weiss (1996)
Finite-velocity diffusionEuropean Journal of Physics, 17
F. Höfling, T. Franosch (2013)
Anomalous transport in the crowded world of biological cellsReports on Progress in Physics, 76
M. Meerschaert, P. Straka, Yuzhen Zhou, R. McGough (2012)
Stochastic solution to a time-fractional attenuated wave equationNonlinear Dynamics, 70
E. Barkai, Y. Garini, R. Metzler (2012)
Strange kinetics of single molecules in living cellsPhysics Today, 65
K. Nørregaard, R. Metzler, Christine Ritter, K. Berg-Sørensen, L. Oddershede (2017)
Manipulation and Motion of Organelles and Single Molecules in Living Cells.Chemical reviews, 117 5
Trifce Sandev (2017)
Generalized Langevin Equation and the Prabhakar Derivative, 5
J. Kingman, P. Moran (1968)
An introduction to probability theory
a ) Linear combination a 1 M 1 ( s ) + a 2 M 2 ( s ) ( a 1 , a 2 ≥ 0) of completely monotone functions 1 ( s ) and 2 ( s ) is completely monotone function as well
Trifce Sandev, I. Sokolov, R. Metzler, A. Chechkin (2017)
Beyond monofractional kineticsChaos Solitons & Fractals, 102
E. Bazhlekova (2015)
Subordination Principle for a Class of Fractional Order Differential Equations, 3
A. Chechkin, J. Klafter, Igor Sokolov (2003)
Fractional Fokker-Planck equation for ultraslow kineticsEPL, 63
G. Viswanathan, M. Luz, E. Raposo, H. Stanley (2011)
The Physics of Foraging: An Introduction to Random Searches and Biological Encounters
I. Kovalenko (1968)
An introduction to probability theory and its applications. Vol. IIUssr Computational Mathematics and Mathematical Physics, 8
A. Zhokh, A. Trypolskyi, P. Strizhak (2018)
Relationship between the anomalous diffusion and the fractal dimension of the environmentChemical Physics, 503
B. Berkowitz, A. Cortis, M. Dentz, H. Scher (2006)
Modeling non‐Fickian transport in geological formations as a continuous time random walkReviews of Geophysics, 44
F. Provenza, J. Villalba, M. Augner (1999)
The Physics of Foraging
We study generalized diffusion-wave equation in which the second order time derivative is replaced by an integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We consider different memory kernels of the integro-differential operator, derive corresponding fundamental solutions, specify the conditions of their non-negativity and calculate the mean squared displacement for all cases. In particular, we introduce and study generalized diffusion-wave equations with a regularized Prabhakar derivative of single and distributed orders. The equations considered can be used for modeling the broad spectrum of anomalous diffusion processes and various transitions between different diffusion regimes.
Journal of Physics A: Mathematical and Theoretical – IOP Publishing
Published: Jan 4, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.