Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
--- -- ----- Journal of Research of the Nationa l Bureau of Standards Vol. 53, No. 6, December 1954 Research Paper 2556 Bounds on a Distribution Function That Are Functions of Moments to Order Four Marvin Zelen Explicit ex pressions are presented [or bound s on a distribution function wh e n mom ents to order rolll' are known. Thes e inequali t ies are given in a f o rm s uitabl e [or applicat ions . 1. Introduction and Statement of Problem Tch ebych en' [7] 2 in J874 propose d a problem t 11at can b e stated as follows: Let F (y ) be an unknO\\'n di stribution f unction oyer t he clo se d inter val 3 [a, b], and satis fying th e conditions F (CL - O) = 0 (j = o, J , ... , k). If t h e moments m j for j = O,I , ... , k arc known , th en for a giv en value of x, (a < x < b) , wh at are t h e (s harp ) llpp er ancllow cl' hounds on F (x )? T ch ebych cA' presen te d without proo f a solution to t h e above problem , which is som et imes call ed t he reduced-moment problem. Proofs were l ate!" given by ;'1arko ff [ I ], Posse [2], and Stielt j es [5,6]. ' 1'1 1(' book by Sh ohat fLnd TfLluarkin [4 ] gives an. acco un t of some of th e moclern day treatments of t h e subje ct . T his paper presents t he ex pli cit express ions for solutions of t h e moment problem (often referred to as t h e T ch ebychcfT"-1[arkoA' inequ alit ies) for t h e cases k = 2,3,4. Inequalities t h at a r c functions of moments to order two were give n b y Tcheb ych eA' [7] for distributions over th e interval [O,b]. Inequa li t ies th at a re functions of moments to order thr ee IVere g iv en b y Po sse [2]. P osse also solved th e case of four moments for di stribu t ions over t h e interval [a , ro). 2. Explicit Expressions for Bounds This section pr es ents without p roo f th e expli cit expressions for bounds on a di stribu tion function. Proofs may b e found in [9]. These are derived as special cases of th e T ch ebych eff Markoff inequaliti es . In all that follows it will be assumed tha t ( 1) Th is willl" esult in no lo ss of generalit y, as any distribution fun ct ion can be mad e to conform to t h ese conditions by the li se of a linear t ransform ation . The assumption (1) implies t h at a, b satisfy the inequaliti es (2) This fo llows from t he necessary condi t ions for the solu t ion of t h e momen t problem (d. Shohat and Tamarkin [4]). I A condensation of certain res ul t s obtained by the author in a thesis submitted to the University of North Caroli na in June 1951 in pa rti al fulfillment of th e requ irements for t110 Mas ter of Arts d eg ree. 2 Fig ures in brac kets indicate the li terature references at the end of t hi s paper. 3 Throughout thi s paper it will be understood that a di s tr ibu t ion func tion over the inte rval [ao, b] is one where the range of the random variabl~ is [a, b l. and the end point s will belong to that inter val unl ess the end points are - co or + co. 377 2 .1. Bounds for Two Moments Let F (y ) be a distrib ution function on [a, b] wi t h known moments t h en for a giy en x, (a < x < b) , . 1 If a<x<-~ (3) - b l + bx < F (x) <1- l + ax (4) (a- b) (a - x ) - - (b- a)(b- x) --<F(x) < 1 (5) 1 + x - - For any- distribution defined over (- 00, (0) inequalities (3) and (5 ) hold for x< O and x> O, respectively. 2 .2 . Bounds for Three Moments Let F (y ) be a distribution function on [a, b] with known moments m3-(a + b) w= l + ab l + ex{3 A ( ex,{3,'Y) = (-y _ ex ) ('Y - (3) ' then for a given x, (a < x < b) (6) ° ~F(x) ::::;A( b, Z2, x ) if x< O, g(x ) ;::: ° if g(x) ~ O , x::::;w (7) A(x, b, Z2) ~F(x) ~A(x, b, Z2) + A(b , Z2 , x) if g(x ) ~O , x;:::w (8) 1 - A (a , Zl , x) ~F(x) ::::; l if g(x) ;::: 0, x> 0. (9) Inequalities (7) and (9) hold for any distribution F(y ) on [a , (0) . Inequaliti es (6) and (8) hold for any distribution F (y ) on (- 00, b]. Note t h at none of t h e inequalit i es (6) to (9) holds for distributions over (- 00, (0). 2 .3 . Bounds for Four Moments L et F(y ) be a d istribution funct ion on [a, b] with moments Let m m m m c( )= 1 2+ [ 'Y - 3+ 'Y ('Y 3-'"!'.4) ] 1 + ['Y 3- 4+(m - 'Y )2]. 9 y ,'Y Y 1 + 'Y (m3- 'Y) . Y 1 + 'Y(m3- 'Y) l_ ~ U (y ) = g(y ,a ), V(y )= g(y , b), Z (y )= g(y , x), and let Ul<U2, Vl<V2, ZI<Z2 b e th e di tinct zeros of U( y ), V (y ), Z(y ) , respectively, t b en a <vl < ul <,U2<U2< b. D efine m 3 (a + b + x) - m 4 - ab - ax- bx Z3 abx + a + b+ x - m 3 A m4 - m N- l ( 1 + x ) (m4-m~- 1 ) + (x2 - m3x - 1)2 m 3- (a + (3 +z3) - a(3 z3 B ( a ,(3 ,'Y ) ('Y- ) ('Y - (3 ) ('Y - 3) a Z then for a given yalue of x, (a <x< b), O ~F(x) ~A (10) if a<x~vl' ( 11 ) B (b,x,a ) ~ F(x) ~B (b ,x,a) + B (a ,b,x) if Vl~X~ Ul x z 1 + 2 < F (x) < l +xz2 +.11 (12) (ZI-X) (ZI- Z2) - - (ZI-X)(ZI- Z2) I - B (a,b ,x) - B (a ,x, b) ~ F(x) ~ I - B (a ,x, b) (13) l -A ~ F(x) ~ l (14) For any distribution defined over (- en, en) inequalities (10), (12), and (14) h old , r esp ec tively, for X<ZI' ZI<X<Z2 , Z2<X . How ever, the ordering of x in relat ion to ZI, Z2 is equiv alent to t h e followin g. L et g (x) =x2- m 3x- 1, t h en x> o , g (x» O if , and only if , Z2<X. ( 15) (16) if , and only if, ZI>X x< O, g (x» ° (17) g(x)< O Us ing (15 ) to ( 17) , t h e applications of tb e T ch ebych efI-MarkoiI inequ alities for t h e case wher e F (y ) is defin ed over (- en, OJ) are mad e part icularly easy. 3 . Application of the Tchebycheff-Markoff Inequalities L et F (y ) b e a distribution function whose fir t foUl' moments coincid e with t ho e of the standard normal distribution , i. e., mo= l , m l= O, m2= 1, m 3= 0 , m 4=3. The T ch eb ycheff Markoff inequalities will b e used to find bounds for F(x ) when x = 2, 3. Bounds using two moments: Since x> 0, inequality (5) is applicable, and we have .8000 ~ F (2) ~ 1 .9000 ~ F(3) ~ 1. B ounds using jour moments : Since X> O, 9(2» 0, 9(3» 0, inequality (14) is applicable. ubstituting t h e appropriate values, we h ave t h erefore, .8947 ~ F(2 ) ~ 1 .9777 ~F(3) ~ 1. Note that th ere are no inequ aliti es applicabl e using only moments to order tluee . 379 ----- - 4. Appendix Statements and proofs of t h e Tchebycheff-Markoff inequaliti es can be fou n d in Shoh at and T amarkin [4], Uspensky [8 ], and Ro yden [3] . This section con tains a statem en t of t h e Tchebycheff-Markoff inequalities as the above sources do no t give t h e theorem in full gen erality , and it is not readily available in the literature. B efor e stati ng the t h eorem i t will be con venient to define th e following: Let T n(Y), U n( y ) , I1n(Y ) , W n(y ) b e polynomials of d egree n defined by (18) i T n(Y) 8n - 1 (y )dF(y ) = 0 i U (y )8 _ (y )(y - a )dF(y ) = 0 (19 ) n n l (2 0) f: I1n(y)8 n- l (y ) (b - y )dF(y ) = 0 i b W n(y )8n_ 1 (y ) (y - a) (b- y )dF(y) = 0 , (2 1) where en- ley) is any polynomial of d egr ee ::::;n - l , and the coefficient for y n in T n(Y) , Un( y ) Vn(Y ) , W n(y ) is unity. Tch ebychejJ-jt1ark ojJ In equali ties: Let F(y) b e any distribution function on [a,b] with moments mo, ml , .. . ,m k mj= i y idF(y) (j = O,I , .. . , k ), and let x b e a given number (a < x< b), then wher e p( z) = ( b q( z) - q(y) dF (y ), Ja z- y and YI < Y2< ... < x < .. . are th e zeros of the polynomial q(y) of degTee l' defined b y q(y ) = (y - x)w( y ) if k = 2n, Un (x) I1n(x) > 0, (22) q(y ) = (y - b) (y - a) (y -x)w(y ) if k = 2n , Un (x) I1n(x) < 0, (23) q(y) = (y - a ) (y -x)w(y ) if k = 2n - l , T n (x) W n_l(x» 0 , (24 ) q(y) = (y - b) (y -x)w(y ) if k = 2n - l , T n (x) W n_1 (x) < 0, (25} where r = n + 2 for eq (23), r = n + 1 for (22), (24 ), (25 ), and w(y) is determin ed b y i = O, 1, . . , n - l for (22) i= O, 1,. ., n-2 for (23), (24), (25 ) . COROLLARY : For eq (22) the i n equali ties hold jar any distribution over ( - 00 , CD) with moments m o, ml,. . ., m 2n. Th e i nequali ties jar eq (24) hold JOT any distributi on oveT [a, 0) with moments mo, m l , .. . ,m2n- !. Th e inequali ties JOT eq (25) hold JOT any distributi on over (- ro, b] with. moments m o, m l, . .. , m2n- !. 380 I wish to cxpress m y t hanks to Professor Was sily Ho effdin g , Univcrsity of S O l'Lh Carolina , for hi s invaluable guid an ce during t h e preparation of t his work. 5 . References [1) A . Markoff, D emo nstration d e cer taine s in ega li ti 6s d e ~ . Tchebycheff, Math . Ann . XXIV, 172- J 80 (18 4) . [2) C . P osse, S ur quelqu es app li ca t ion s des fraction s continues a lgeb riq ues (Acade mi c Im p eria le d es Sciences, St. P eters burg, 1886). [3) H . L. Royd e n, Bound s on a di st ri bution function \\"he ll its .fir st n mom e nt s arc g il'en , A nn . :V[ath . Stat. 24, 361- 376 (1953). [4) J . A. Shohat and J . D . Tama rkin. The problems of moments (Am . :V[ath . Soc. , NelV York , 1943). [5) T . J . Stieltjes, Sur l'el'aluation a pp roc hee des integra les, Compt. re nd XCVII, 740- 742 , 79 799 (1883 ) . [6) T . J . Stieltj es, R eche r ches s ur les fraction s co ntinu es, Ann . facu lte scicnce s Tou lou se VIII, 1- 22 (1894); IX, 45- 4 7 (1895 ) . [7) P . T chebycheff, Sur les v a le u rs limites des integra les, J . de Math. [2) XIX, 157- 160 (18 74 ). [8) J . V . U spen s ky, In t rod uct io n to mathematical p rob ab ili t.l' ( YlcGra"'-Hill Book Co ., New York , N. Y. , 1937 ) . [9) M . Zelen, B o und s o n a di stribution function which are fun ction s of moments, unpubli s h ed mas te rs th es is (Un i l'er s it.1' of ~orth Car olina Librar y , 195 1). W ASHINGTON, Noyember 20 , 1953.
Journal of research of the National Bureau of Standards – Unpaywall
Published: Dec 1, 1954
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.