Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Dual enantioselective control in asymmetric synthesis.

Dual enantioselective control in asymmetric synthesis. It is desirable and practical to produce both enantiomers of a target from the same chiral starting material by stereodifferentiation of prochiral compounds, for instance utilizing a chiral ligand derived from a natural (L) amino acid. During the past 7 years, excellent results have been achieved in several cases by multiple stereodifferentiation of chiral ligands derived from (S)-indoline-2-carboxylic acid: highly diastereo- and enantioselective pinacol coupling reactions of chiral alpha-ketoamides gave both (S,S)- and (R,R)-quaternary tartaric acid for the first time; asymmetric Diels-Alder cyclization of chiral acrylamides in the presence of Lewis acid afforded extremely high diastereoselectivities of both opposite configurations of the cyclized diastereomers depending upon the structures of chiral ligands and Lewis acids; and asymmetric alkylation of aldehydes to both enantiomers of secondary alcohols and asymmetric hydrogenation of ketones to both enantiomers of chiral secondary alcohols have been achieved using catalysts derived from (S)-indoline-2-carboxylic acid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Accounts of Chemical Research Pubmed

Dual enantioselective control in asymmetric synthesis.

Accounts of Chemical Research , Volume 34 (12): 8 – Jan 31, 2002

Dual enantioselective control in asymmetric synthesis.


Abstract

It is desirable and practical to produce both enantiomers of a target from the same chiral starting material by stereodifferentiation of prochiral compounds, for instance utilizing a chiral ligand derived from a natural (L) amino acid. During the past 7 years, excellent results have been achieved in several cases by multiple stereodifferentiation of chiral ligands derived from (S)-indoline-2-carboxylic acid: highly diastereo- and enantioselective pinacol coupling reactions of chiral alpha-ketoamides gave both (S,S)- and (R,R)-quaternary tartaric acid for the first time; asymmetric Diels-Alder cyclization of chiral acrylamides in the presence of Lewis acid afforded extremely high diastereoselectivities of both opposite configurations of the cyclized diastereomers depending upon the structures of chiral ligands and Lewis acids; and asymmetric alkylation of aldehydes to both enantiomers of secondary alcohols and asymmetric hydrogenation of ketones to both enantiomers of chiral secondary alcohols have been achieved using catalysts derived from (S)-indoline-2-carboxylic acid.

Loading next page...
 
/lp/pubmed/dual-enantioselective-control-in-asymmetric-synthesis-CveJSrwATW

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0001-4842
DOI
10.1021/ar000187z
pmid
11747413

Abstract

It is desirable and practical to produce both enantiomers of a target from the same chiral starting material by stereodifferentiation of prochiral compounds, for instance utilizing a chiral ligand derived from a natural (L) amino acid. During the past 7 years, excellent results have been achieved in several cases by multiple stereodifferentiation of chiral ligands derived from (S)-indoline-2-carboxylic acid: highly diastereo- and enantioselective pinacol coupling reactions of chiral alpha-ketoamides gave both (S,S)- and (R,R)-quaternary tartaric acid for the first time; asymmetric Diels-Alder cyclization of chiral acrylamides in the presence of Lewis acid afforded extremely high diastereoselectivities of both opposite configurations of the cyclized diastereomers depending upon the structures of chiral ligands and Lewis acids; and asymmetric alkylation of aldehydes to both enantiomers of secondary alcohols and asymmetric hydrogenation of ketones to both enantiomers of chiral secondary alcohols have been achieved using catalysts derived from (S)-indoline-2-carboxylic acid.

Journal

Accounts of Chemical ResearchPubmed

Published: Jan 31, 2002

There are no references for this article.