Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Rocha, M. Urciuolo (2011)
On the Hp-Lp-boundedness of some integral operators, 18
G. Hardy, J. Littlewood (1928)
Some properties of fractional integrals. I.Mathematische Zeitschrift, 27
L. Grafakos (2010)
Classical Fourier Analysis
Y. Kanjin, M. Satake (2000)
Inequalities for Discrete Hardy SpacesActa Mathematica Hungarica, 89
P. Rocha, M. Urciuolo (2012)
On the Hp-Lq boundedness of some fractional integral operatorsCzechoslovak Mathematical Journal, 62
E. Stein (1993)
Harmonic Analysis (PMS-43), Volume 43: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. (PMS-43)
E. Liflyand (2021)
Harmonic Analysis on the Real LinePathways in Mathematics
A. Zygmund
Sur les fonctions conjuguéesFundamenta Mathematicae, 13
F. Ricci, P. Sjögren (1988)
Two-parameter maximal functions in the Heisenberg groupMathematische Zeitschrift, 199
K. Ho (2017)
Discrete Hardy’s inequalities with0Journal of King Saud University - Science
D. Deng, Yongsheng Han, Y. Meyer (2008)
Harmonic Analysis on Spaces of Homogeneous Type
(1918)
Notes on some points in the integral calculus. LI (On Hilbert's doubleseries theorem, and some connected theorems concerning the convergence of infinite series and integrals)
P. Rocha, M. Urciuolo (2014)
Fractional Type Integral Operators on Variable Hardy SpacesActa Mathematica Hungarica, 143
F. Wiener (1910)
Elementarer Beweis eines Reihensatzes von Herrn HilbertMathematische Annalen, 68
Santiago Boza, M. Carro (1998)
Discrete Hardy spacesStudia Mathematica, 129
H. Weyl
Singuläre integralgleichungen mit besonderer berücksichtigung des Fourierschen integraltheorems ...
J. Schur
Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen.Journal für die reine und angewandte Mathematik (Crelles Journal), 1911
R. Jackson (2020)
InequalitiesAlgebra for Parents
C. Eoff (1995)
The discrete nature of the Paley-Wiener spaces, 123
Y. Komori (2002)
The Atomic Decomposition of Molecule on Discrete Hardy SpacesActa Mathematica Hungarica, 95
E. Titchmarsh (1926)
Reciprocal formulae involving series and integralsMathematische Zeitschrift, 26
P. Rocha, M. Urciuolo (2016)
ON THE H-L BOUNDEDNESS OF SOME FRACTIONAL INTEGRAL OPERATORS
G. Hardy, J. Littlewood, G. Pólya
The Maximum of a Certain Bilinear FormProceedings of The London Mathematical Society
For 0≤γ<1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0 \leq \gamma < 1$$\end{document} and a sequence b={b(i)}i∈Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$b=\{ b(i) \}_{i \in \mathbb{Z}}$$\end{document} we consider the fractional operator Tα,β\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T_{\alpha, \beta}$$\end{document} defined formally by (Tα,βb)(j)=∑i≠±jb(i)|i-j|α|i+j|β(j∈Z),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(T_{\alpha, \beta} \, b)(j) = \sum_{i \neq \pm j} \frac{b(i)}{|i-j|^{\alpha} |i+j|^{\beta}} \quad (j \in \mathbb{Z}),$$\end{document}where α,β>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha, \beta > 0$$\end{document} and α+β=1-γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha + \beta = 1 - \gamma$$\end{document}. The main aim of this note is to prove that the operator Tα,β\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T_{\alpha, \beta}$$\end{document} is bounded from Hp(Z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^{p}(\mathbb{Z})$$\end{document} into ℓq(Z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ell^{q}(\mathbb{Z})$$\end{document} for 0<p<1γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0 < p < \frac{1}{\gamma}$$\end{document} and 1q=1p-γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\frac{1}{q} = \frac{1}{p} - \gamma$$\end{document}. For α=β=1-γ2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha = \beta = \frac{1-\gamma}{2}$$\end{document} we show that there exists ϵ∈(0,13)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\epsilon \in (0, \frac 13 )$$\end{document} such that for every 0≤γ<ϵ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${0 \leq \gamma < \epsilon}$$\end{document} the operator T1-γ2,1-γ2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T_{\frac{1-\gamma}{2}, \frac{1-\gamma}{2}}$$\end{document} is not bounded from Hp(Z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^{p}(\mathbb{Z})$$\end{document} into Hq(Z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^{q}(\mathbb{Z})$$\end{document} for 0<p≤11+γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0 < p \leq \frac{1}{1 + \gamma}$$\end{document} and 1q=1p-γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\frac{1}{q} = \frac{1}{p} - \gamma$$\end{document}.
Acta Mathematica Hungarica – Springer Journals
Published: Oct 1, 2022
Keywords: discrete Hardy space; atomic decomposition; fractional series; 42B30; 42B25
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.