Access the full text.
Sign up today, get DeepDyve free for 14 days.
Daniel Heinsoo (2014)
Cultivation of Spirulina on Conventional and Urine Based Medium in a Household Scale System
M. Morales, León Sánchez, S. Revah (2018)
The impact of environmental factors on carbon dioxide fixation by microalgaeFEMS Microbiology Letters, 365
J. Pires, M. Alvim-Ferraz, F. Martins, M. Simões (2012)
Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery conceptRenewable & Sustainable Energy Reviews, 16
(2018)
Cultivation of Arthrospira platensis using discharge water from Thai shrimp farm for algal production and wastewater treatment
Yimin a, Changan a (2021)
How to narrow the CO2 gap from growth-optimal to flue gas levels by using microalgae for carbon capture and sustainable biomass productionJournal of Cleaner Production, 280
R. Sayre (2010)
Microalgae: The Potential for Carbon Capture, 60
Keyuri Mokashi, Vishaka Shetty, Sangeetha George, G. Sibi (2016)
Sodium Bicarbonate as Inorganic Carbon Source for Higher Biomass and Lipid Production Integrated Carbon Capture in Chlorella vulgarisAchievements in the Life Sciences, 10
R. Gayathri, S. Mahboob, M. Govindarajan, K. Al-Ghanim, Z. Ahmed, N. Al-Mulahim, M. Vodovnik, S. Vijayalakshmi (2020)
A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risksJournal of King Saud University - Science
Baohua Zhu, Han Shen, Yun Li, Qiuke Liu, Guiyong Jin, Jichang Han, Yan Zhao, K. Pan (2020)
Large-Scale Cultivation of Spirulina for Biological CO2 Mitigation in Open Raceway Ponds Using Purified CO2 From a Coal Chemical Flue GasFrontiers in Bioengineering and Biotechnology, 7
F. Almomani (2019)
Assessment and modeling of microalgae growth considering the effects OF CO2, nutrients, dissolved organic carbon and solar irradiation.Journal of environmental management, 247
(2011)
Use of microalgae in wastewater treatment to remove contaminants and purify biogas. Mater of Applied Science thesis The Faculty of Graduate Studies of The University of Guelph
M. Mühling, Nicholas Harris, A. Belay, B. Whitton (2003)
REVERSAL OF HELIX ORIENTATION IN THE CYANOBACTERIUM ARTHROSPIRA 1Journal of Phycology, 39
S. Belkin, S. Boussiba (1991)
Resistance of Spirulina platensis to Ammonia at High pH ValuesPlant and Cell Physiology, 32
Malcolm Brown, S. Jeffrey, J. Volkman, G. Dunstan (1997)
Nutritional properties of microalgae for maricultureAquaculture, 151
(1982)
Biotechnology and exploitation of algae. The Indian Approach German agency for technical cooperation (GTZ)
F. Almomani, S. Judd, R. Bhosale, Mohammed Shurair, K. Aljaml, M. Khraisheh (2019)
Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal cultureProcess Safety and Environmental Protection
A. Gitelson, H. Qiuang, A. Richmond (1996)
Photic Volume in Photobioreactors Supporting Ultrahigh Population Densities of the Photoautotroph Spirulina platensisApplied and Environmental Microbiology, 62
Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins (2008)
Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances.The Plant journal : for cell and molecular biology, 54 4
Reza Pourjamshidian, H. Abolghasemi, M. Esmaili, H. Amrei, M. Parsa, Shima Rezaei (2019)
CARBON DIOXIDE BIOFIXATION BY Chlorella sp. IN A BUBBLE COLUMN REACTOR AT DIFFERENT FLOW RATES AND CO2 CONCENTRATIONSBrazilian Journal of Chemical Engineering
Juliana Moreira, A. Terra, J. Costa, M. Morais (2016)
UTILIZATION OF CO2 IN SEMI-CONTINUOUS CULTIVATION OF Spirulina sp. AND Chlorella fusca AND EVALUATION OF BIOMASS COMPOSITIONBrazilian Journal of Chemical Engineering, 33
M. Morais, J. Costa (2007)
Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor.Journal of biotechnology, 129 3
O. Ciferri (1983)
Spirulina, the edible microorganismMicrobiological Reviews, 47
S. Marzorati, A. Schievano, Antonio Idà, L. Verotta (2020)
Carotenoids, chlorophylls and phycocyanin from Spirulina: supercritical CO2 and water extraction methods for added value products cascadeGreen Chemistry
N. Eriksen (2008)
Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicineApplied Microbiology and Biotechnology, 80
Y. Azov (1982)
Effect of pH on Inorganic Carbon Uptake in Algal CulturesApplied and Environmental Microbiology, 43
Mokashi (2016)
Sodium bicarbonate as inorganic carbon source for higher biomass and lipid production integrated carbon capture in Chlorella vulgarisLife Sci., 10
Xianhai Zeng, M. Danquah, Shiduo Zhang, Xia Zhang, Mengyang Wu, X. Chen, I. Ng, Keju Jing, Yinghua Lu (2012)
Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin productionChemical Engineering Journal, 183
Kanhaiya Kumar, C. Dasgupta, B. Nayak, P. Lindblad, D. Das (2011)
Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria.Bioresource technology, 102 8
Choong-Jae Kim, Y. Jung, H. Oh (2007)
Factors indicating culture status during cultivation of Spirulina (Arthrospira) platensis.Journal of microbiology, 45 2
T. Chainapong, S. Traichaiyaporn, R. Deming (2012)
Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis.International Journal of Agricultural Technology, 8
G. Gärtner, Blagoy Uzunov, E. Ingolič, W. Kofler, G. Gacheva, P. Pilarski, L. Zagorchev, M. Odjakova, M. Stoyneva (2015)
Мicroscopic investigations (LM, TEM and SEM) and identification of Chlorella isolate R-06/2 from extreme habitat in Bulgaria with a strong biological activity and resistance to environmental stress factorsBiotechnology & Biotechnological Equipment, 29
D. White, A. Pagarette, Paul Rooks, Sohail Ali (2012)
The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae culturesJournal of Applied Phycology, 25
(2010)
Advance emission control & precision agriculture; CO2 sequestration using algae integrated management system
(2020)
CO2 Sequestration efficiency by Spirulina sp
C. Ezzell (1988)
Analytical techniquesNature, 334
David Hall, F. Fernández, E. Guerrero, K. Rao, E. Grima (2003)
Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity.Biotechnology and bioengineering, 82 1
C. Eykelenburg (2004)
The ultrastructure of Spirulina platensis in relation to temperature and light intensityAntonie van Leeuwenhoek, 45
N. Nhu, et a (2017)
The effect of pH, dark - light cycle and light colour on the chlorophyll and carotenoid production of Spirulina sp.Asia-Pacific Journal of Science and Technology, 19
A. Michael, M. Kyewalyanga, C. Lugomela (2019)
Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective mediumAnnals of Microbiology, 69
Song-Gun Kim, Ae-Ran Choi, C. Ahn, Chan Park, Yong Park, H. Oh (2005)
Harvesting of Spirulina platensis by cellular flotation and growth stage determinationLetters in Applied Microbiology, 40
H. Lichtenthaler (1987)
CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANESMethods in Enzymology, 148
A. Richmond, J. Grobbelaar (1986)
Factors affecting the output rate of Spirulina platensis with reference to mass cultivationBiomass, 10
(1988)
Cultivation of Spirulina sp. in media containing different concentrations of sodium bicarbonate
A. Pedro, C. González-López, F. Acién, E. Molina-Grima (2014)
Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors.Bioresource technology, 169
A. Sabia, E. Clavero, S. Pancaldi, Joan Rovira (2018)
Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonanaApplied Microbiology and Biotechnology, 102
V. Nagle, N. Mhalsekar, T. Jagtap (2010)
Isolation, optimization and characterization of selected Cyanophycean membersIndian Journal of Marine Sciences, 39
Feng Chen, Yiming Zhang (1997)
High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch systemEnzyme and Microbial Technology, 20
(1975)
A method for determination of chlorophyll
(1983)
A Monograph on Spirulina platensis
S. Singh, Priyanka Singh (2014)
Effect of CO2 concentration on algal growth: A reviewRenewable & Sustainable Energy Reviews, 38
M. García-Malea, F. Acién, E. Río, José Fernández, M. Cerón, Miguel Guerrero, E. Molina-Grima (2009)
Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors.Biotechnology and bioengineering, 102 2
A. Richmond (2000)
Microalgal biotechnology at the turn of the millennium: A personal viewJournal of Applied Phycology, 12
J. Grobbelaar (2007)
Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us?Journal of Applied Phycology, 19
J. Pandey, N. Pathak, A. Tiwari (2010)
Standardization of pH and Light Intensity for the Biomass Production of Spirulina platensis
South African Journal of Botany – CrossRef
Published: Jul 1, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.