Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Landon, A. Pajon, F. Vovelle, P. Sodano (2000)
The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein.The journal of peptide research : official journal of the American Peptide Society, 56 4
T. Matsunaga, Arman Rahman (1998)
What brought the adaptive immune system to vertebrates? ‐ The jaw hypothesis and the seahorseImmunological Reviews, 166
B. Thomma, I. Penninckx, W. Broekaert, B. Cammue (2001)
The complexity of disease signaling in Arabidopsis.Current opinion in immunology, 13 1
J. Caldwell, F. Abildgaard, Ž. Džakula, D. Ming, Goran Hellekant, J. Markley (1998)
Solution structure of the thermostable sweet-tasting protein brazzeinNature Structural Biology, 5
Yuji Kobayashi, H. Takashima, H. Tamaoki, Y. Kyōgoku, P. Lambert, H. Kuroda, N. Chino, Takushi Watanabe, Terutoshi Kimura, S. Sakakibara, L. Moroder (1991)
The cystine‐stabilized α‐helix: A common structural motif of ion‐channel blocking neurotoxic peptidesBiopolymers, 31
M. Lamberty, A. Caille, C. Landon, S. Tassin-Moindrot, C. Hétru, P. Bulet, F. Vovelle (2001)
Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities.Biochemistry, 40 40
Z. Oren, Y. Shai (1998)
Mode of action of linear amphipathic alpha-helical antimicrobial peptides.Biopolymers, 47 6
Luis Carrasco, D. Vazquez, C. Hernández-Lucas, P. Carbonero, F. Garcı́a-Olmedo (1981)
Thionins: plant peptides that modify membrane permeability in cultured mammalian cells.European journal of biochemistry, 116 1
D. Diep, Tracy Lawrence, J. Ausió, S. Howard, J. Buckley (1998)
Secretion and properties of the large and small lobes of the channel‐forming toxin aerolysinMolecular Microbiology, 30
M. Selsted, D. Szklarek, R. Lehrer (1984)
Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytesInfection and Immunity, 45
B. Hille (2001)
Ionic channels of excitable membranes
G. Mitta, F. Vandenbulcke, F. Hubert, M. Salzet, P. Roch (2000)
Involvement of Mytilins in Mussel Antimicrobial Defense*The Journal of Biological Chemistry, 275
K. Kragh, J. Nielsen, K. Nielsen, S. Dreboldt, Mikkelsen Jd (1995)
Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris.Molecular plant-microbe interactions : MPMI, 8 3
F. Colilla, A. Rocher, E. Méndez (1990)
γ‐Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endospermFEBS Letters, 270
B. Thomma, K. Eggermont, I. Penninckx, B. Mauch-Mani, R. Vogelsang, B. Cammue, W. Broekaert (1998)
Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens.Proceedings of the National Academy of Sciences of the United States of America, 95 25
M. Selsted, Y. Tang, W. Morris, P. McGuire, M. Novotny, W. Smith, A. Henschen, J. Cullor (1993)
Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils.The Journal of biological chemistry, 268 9
F. Fant, W. Vranken, F. Borremans (1999)
The three‐dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonanceProteins: Structure, 37
Y. Shai (1999)
Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides.Biochimica et biophysica acta, 1462 1-2
B. Thomma, W. Broekaert (1998)
Tissue-specific expression of plant defensin genes PDF2.1 and PDF2.2 in Arabidopsis thalianaPlant Physiology and Biochemistry, 36
Q. Gu, E. Kawata, M. Morse, Hen-Ming Wu, A. Cheung (1992)
A flower-specific cDNA encoding a novel thionin in tobaccoMolecular and General Genetics MGG, 234
Mauricio Arias, S. Zaat, Hans Vogel (1998)
Structure-function relationships of antimicrobial peptides.Biochemistry and cell biology = Biochimie et biologie cellulaire, 76 2-3
Franky Terras, H. Schoofs, M. Bolle, F. Leuven, S. Rees, J. Vanderleyden, B. Cammue, W. Broekaert (1992)
Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds.The Journal of biological chemistry, 267 22
S. Stock, H. Hama, J. Radding, D. Young, J. Takemoto (2000)
Syringomycin E Inhibition of Saccharomyces cerevisiae: Requirement for Biosynthesis of Sphingolipids with Very-Long-Chain Fatty Acids and Mannose- and Phosphoinositol-Containing Head GroupsAntimicrobial Agents and Chemotherapy, 44
Stephane CociancichS, Alexandre GhaziO, C. Hétru, Jules HoffmannSn, Lucienne Letelliers (1993)
Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus.The Journal of biological chemistry, 268 26
W. Broekaert, Franky Terras, B. Cammue, R. Osborn (1995)
Plant Defensins: Novel Antimicrobial Peptides as Components of the Host Defense System, 108
E. Parashina, L. Serdobinskii, E. Kalle, N. Lavrova, V. Avetisov, V. Lunin, B. Naroditskii (2000)
Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene.Russian Journal of Plant Physiology, 47
M. Charlet, Serguey Chernysh, H. Philippe, C. Hétru, J. Hoffmann, P. Bulet (1996)
Innate ImmunityThe Journal of Biological Chemistry, 271
M. Trabi, H. Schirra, D. Craik (2001)
Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes.Biochemistry, 40 14
R. Maget-Dana, M. Ptak (1997)
Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes.Biophysical journal, 73 5
I. Polikarpov, M. Júnior, S. Marangoni, M. Toyama, A. Teplyakov (1999)
Crystal structure of neurotoxin Ts1 from Tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins.Journal of molecular biology, 290 1
C. Bloch, S. Patel, F. Baud, M. Zvelebil, M. Carr, P. Sadler, J. Thornton (1998)
1H NMR structure of an antifungal γ‐thionin protein SIα1: Similarity to scorpion toxinsProteins: Structure, 32
K. Thevissen, R. Osborn, D. Acland, W. Broekaert (2000)
Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity.Molecular plant-microbe interactions : MPMI, 13 1
Gao Ag, S. Hakimi, Mittanck Ca, Yonnie Wu, Woerner Bm, D. Stark, D. Shah, Jihong Liang, C. Rommens (2000)
Fungal pathogen protection in potato by expression of a plant defensin peptideNature Biotechnology, 18
L. Liu, C. Zhao, H. Heng, T. Ganz (1997)
The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry.Genomics, 43 3
J. Harder, R. Siebert, Y. Zhang, P. Matthiesen, E. Christophers, B. Schlegelberger, J. Schröder (1997)
Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1.Genomics, 46 3
R. Shade, H. Schroeder, J. Pueyo, L. Tabe, L. Murdock, T. Higgins, M. Chrispeels (1994)
Transgenic Pea Seeds Expressing the α-Amylase Inhibitor of the Common Bean are Resistant to Bruchid BeetlesBio/Technology, 12
W. Wimley, M. Selsted, S. White (1994)
Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric poresProtein Science, 3
C. Hill, Jeff Yee, M. Selsted, D. Eisenberg (1991)
Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization.Science, 251 5000
M. Moreno, A. Segura, F. Garcı́a-Olmedo (1994)
Pseudothionin-St1, a potato peptide active against potato pathogens.European journal of biochemistry, 223 1
M. Jablonský, P. Jackson, N. Krishna (2001)
Solution structure of an insect-specific neurotoxin from the New World scorpion Centruroides sculpturatus Ewing.Biochemistry, 40 28
G. Samblanx, I. Goderis, K. Thevissen, R. Raemaekers, F. Fant, F. Borremans, D. Acland, R. Osborn, Sunil Patel, W. Broekaert (1997)
Mutational Analysis of a Plant Defensin from Radish (Raphanus sativus L.) Reveals Two Adjacent Sites Important for Antifungal Activity*The Journal of Biological Chemistry, 272
A. Pardi, X. Zhang, M. Selsted, J. Skalicky, Ping Yip (1992)
NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1.Biochemistry, 31 46
Y. Xiong, M. Yeaman, A. Bayer (1999)
In Vitro Antibacterial Activities of Platelet Microbicidal Protein and Neutrophil Defensin against Staphylococcus aureus Are Influenced by Antibiotics Differing in Mechanism of ActionAntimicrobial Agents and Chemotherapy, 43
W. Broekaert, B. Cammue, M. Bolle, K. Thevissen, G. Samblanx, R. Osborn, K. Nielson (1997)
Antimicrobial Peptides from PlantsCritical Reviews in Plant Sciences, 16
E. Méndez, A. Moreno, F. Colilla, F. Pelaez, G. Limas, R. Méndez, F. Soriano, M. Salinas, C. Haro (1990)
Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm.European journal of biochemistry, 194 2
R. Dickson, E. Nagiec, G. Wells, M. Nagiec, R. Lester (1997)
Synthesis of Mannose-(inositol-P)2-ceramide, the Major Sphingolipid in Saccharomyces cerevisiae, Requires the IPT1 (YDR072c) Gene*The Journal of Biological Chemistry, 272
E. Méndez, A. Rocher, M. Calero, T. Girbés, L. Citores, F. Soriano (1996)
Primary structure of omega-hordothionin, a member of a novel family of thionins from barley endosperm, and its inhibition of protein synthesis in eukaryotic and prokaryotic cell-free systems.European journal of biochemistry, 239 1
C. Chiang, L. Hadwiger (1991)
The Fusarium solani-induced expression of a pea gene family encoding high cysteine content proteins.Molecular plant-microbe interactions : MPMI, 4 4
K. Thevissen, R. Osborn, D. Acland, W. Broekaert (1997)
Specific, High Affinity Binding Sites for an Antifungal Plant Defensin on Neurospora crassa Hyphae and Microsomal Membranes*The Journal of Biological Chemistry, 272
J. Caaveiro, A. Molina, J. González-Mañas, P. Rodríguez-Palenzuela, F. Garcı́a-Olmedo, F. Goñi (1997)
Differential effects of five types of antipathogenic plant peptides on model membranesFEBS Letters, 410
F. Bontems, C. Roumestand, P. Boyot, B. Gilquin, Y. Doljansky, A. Ménez, F. Toma (1991)
Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins.European journal of biochemistry, 196 1
K. Thevissen, A. Ghazi, G. Samblanx, C. Brownlee, R. Osborn, W. Broekaert (1996)
Fungal Membrane Responses Induced by Plant Defensins and Thionins*The Journal of Biological Chemistry, 271
G. Leppert, R. McDevitt, S. Falco, T. Dyk, M. Ficke, J. Golin (1990)
Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces.Genetics, 125 1
M. Bruix, Carlos González, J. Santoro, F. Soriano, A. Rocher, E. Méndez, M. Rico (1995)
1H‐nmr studies on the structure of a new thionin from barley endospermBiopolymers, 36
M. Almeida, Kátia Cabral, E. Kurtenbach, F. Almeida, A. Valente (2002)
Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action.Journal of molecular biology, 315 4
F. Hubert, T. Noël, P. Roch (1996)
A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis)European journal of biochemistry, 240 1
M. Bruix, M. Jiménez, J. Santoro, Carlos González, F. Colilla, E. Méndez, M. Rico (1993)
Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins.Biochemistry, 32 2
Franky Terras, S. Torrekens, F. Leuven, R. Osborn, J. Vanderleyden, B. Cammue, W. Broekaert (1993)
A new family of basic cysteine‐rich plant antifungal proteins from Brassicaceae speciesFEBS Letters, 316
S. Ludtke, K. He, W. Heller, T. Harroun, L. Yang, Huey Huang (1996)
Membrane pores induced by magainin.Biochemistry, 35 43
The Initiative (2000)
Analysis of the genome sequence of the flowering plant Arabidopsis thalianaNature, 408
Yaping Wang, Goska Nowak, D. Culley, L. Hadwiger, B. Fristensky (1999)
Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus)Molecular Plant-microbe Interactions, 12
W. Schaaper, G. Posthuma, H. Plasman, L. Sijtsma, F. Fant, F. Borremans, K. Thevissen, W. Broekaert, R. Meloen, A. Amerongen (2001)
Synthetic peptides derived from the beta2-beta3 loop of Raphanus sativus antifungal protein 2 that mimic the active site.The journal of peptide research : official journal of the American Peptide Society, 57 5
F. Fant, W. Vranken, W. Broekaert, F. Borremans (1998)
Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR.Journal of molecular biology, 279 1
R. Osborn, G. Samblanx, K. Thevissen, I. Goderis, S. Torrekens, F. Leuven, S. Attenborough, S. Rees, W. Broekaert (1995)
Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and SaxifragaceaeFEBS Letters, 368
S. Harrison, J. Marcus, K. Goulter, Jodie Green, D. Maclean, J. Manners (1997)
An antimicrobial peptide from the Australian native Hardenbergia violacea provides the first functionally characterised member of a subfamily of plant defensinsAustralian Journal of Plant Physiology, 24
C. Kushmerick, M. Castro, J. Cruz, C. Bloch, P. Beirão (1998)
Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers.FEBS letters, 440 3
R. Lehrer, A. Lichtenstein, T. Ganz (1993)
Defensins: antimicrobial and cytotoxic peptides of mammalian cells.Annual review of immunology, 11
H. Jia, B. Schutte, A. Schudy, R. Linzmeier, J. Guthmiller, G. Johnson, B. Tack, J. Mitros, A. Rosenthal, T. Ganz, P. McCray (2001)
Discovery of new human β-defensins using a genomics-based approachGene, 263
B. Cornet, J. Bonmatin, C. Hétru, J. Hoffmann, M. Ptak, F. Vovelle (1995)
Refined three-dimensional solution structure of insect defensin A.Structure, 3 5
C. Bloch, M. Richardson (1991)
A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins.FEBS letters, 279 1
K. Thevissen, Franky Terras, W. Broekaert (1999)
Permeabilization of Fungal Membranes by Plant Defensins Inhibits Fungal GrowthApplied and Environmental Microbiology, 65
R. Franky, Terras, Valentina Kovaleva, Natasha, V. Raikhel, Rupert, W. Osborn, Anthea Kester, Sarah, 6., Rees, J. Vanderleyden, B. Cammue (1995)
Small cysteine-rich antifungal proteins from radish: their role in host defense.The Plant cell, 7 5
Carol Friedrich, D. Moyles, T. Beveridge, R. Hancock (2000)
Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive BacteriaAntimicrobial Agents and Chemotherapy, 44
I. Penninckx, K. Eggermont, Franky Terras, B. Thomma, G. Samblanx, A. Buchala, J. Metraux, J. Manners, W. Broekaert (1996)
Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway.The Plant cell, 8 12
R. Lehrer, Tomas Ganz, D. Szklarek, Michael Selstedlt (1988)
Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations.The Journal of clinical investigation, 81 6
K. Thevissen, B. Cammue, K. Lemaire, J. Winderickx, R. Dickson, R. Lester, Kathelijne Ferket, Frederic Even, A. Parret, W. Broekaert (2000)
A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii).Proceedings of the National Academy of Sciences of the United States of America, 97 17
D. Hoover, O. Chertov, J. Lubkowski (2001)
The structure of human beta-defensin-1: new insights into structural properties of beta-defensins.The Journal of biological chemistry, 276 42
B. Bechinger (1997)
Structure and Functions of Channel-Forming Peptides: Magainins, Cecropins, Melittin and AlamethicinThe Journal of Membrane Biology, 156
Maria Garcia, Ying-Duo Gao, O. McManus, G. Kaczorowski (2001)
Potassium channels: from scorpion venoms to high-resolution structure.Toxicon : official journal of the International Society on Toxinology, 39 6
Ana Segura, M. Moreno, A. Molina, F. Garcı́a-Olmedo (1998)
Novel defensin subfamily from spinach (Spinacia oleracea)FEBS Letters, 435
B. Kagan, M. Selsted, T. Ganz, R. Lehrer (1990)
Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes.Proceedings of the National Academy of Sciences of the United States of America, 87 1
P. Epple, K. Apel, H. Bohlmann (1997)
ESTs reveal a multigene family for plant defensins in Arabidopsis thalianaFEBS Letters, 400
M. Bagnat, S. Keränen, A. Shevchenko, A. Shevchenko, K. Simons (2000)
Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast.Proceedings of the National Academy of Sciences of the United States of America, 97 7
B. Thomma, K. Eggermont, K. Tierens, W. Broekaert (1999)
Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea.Plant physiology, 121 4
D. Hoover, Kanaghalagatta Rajashankar, R. Blumenthal, A. Puri, J. Oppenheim, O. Chertov, J. Lubkowski (2000)
The Structure of Human β-Defensin-2 Shows Evidence of Higher Order Oligomerization*The Journal of Biological Chemistry, 275
J. Bonmatin, J. Bonnat, X. Gallet, F. Vovelle, M. Ptak, J. Reichhart, J. Hoffmann, E. Keppi, M. Legrain, T. Achstetter (1992)
Two-dimensional1H NMR study of recombinant insect defensin A in water: Resonance assignments, secondary structure and global foldingJournal of Biomolecular NMR, 2
C. Landon, P. Sodano, C. Hétru, J. Hoffmann, M. Ptak (1997)
Solution structure of drosomycin, the first inducible antifungal protein from insectsProtein Science, 6
K. Hristova, M. Selsted, Stephen White (1996)
Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2.Biochemistry, 35 36
Manhong Wu, E. Maier, R. Benz, R. Hancock (1999)
Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.Biochemistry, 38 22
H. Boman (1995)
Peptide antibiotics and their role in innate immunity.Annual review of immunology, 13
J. Dimarcq, P. Bulet, C. Hétru, J. Hoffmann (1998)
Cysteine-rich antimicrobial peptides in invertebrates.Biopolymers, 47 6
M. Sawai, H. Jia, Lide Liu, V. Aseyev, J. Wiencek, P. McCray, T. Ganz, W. Kearney, B. Tack (2001)
The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment.Biochemistry, 40 13
G. Samblanx, A. Carmen, L. Sijtsma, H. Plasman, W. Schaaper, G. Posthuma, F. Fant, R. Meloen, W. Broekaert, A. Amerongen (1996)
Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence.Peptide research, 9 6
L. Abrami, Marie-Claire Velluz, Yeongjin Hong, K. Ohishi, A. Mehlert, M. Ferguson, T. Kinoshita, F. Goot (2002)
The glycan core of GPI‐anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin–receptor interactionFEBS Letters, 512
Yiquan Tang, Jun Yuan, G. Ösapay, K. Ősapay, Dat Tran, Christopher Miller, A. Ouellette, M. Selsted (1999)
A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins.Science, 286 5439
M. Castle, Arpi Nazarian, S. Yi, P. Tempst (1999)
Lethal Effects of Apidaecin on Escherichia coliInvolve Sequential Molecular Interactions with Diverse Targets*The Journal of Biological Chemistry, 274
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern that is stabilized by eight disulfide-linked cysteines. They are termed plant defensins because they are structurally related to defensins found in other types of organism, including humans. To date, sequences of more than 80 different plant defensin genes from different plant species are available. In Arabidopsis thaliana, at least 13 putative plant defensin genes (PDF) are present, encoding 11 different plant defensins. Two additional genes appear to encode plant defensin fusions. Plant defensins inhibit the growth of a broad range of fungi but seem nontoxic to either mammalian or plant cells. Antifungal activity of defensins appears to require specific binding to membrane targets. This review focuses on the classification of plant defensins in general and in Arabidopsis specifically, and on the mode of action of plant defensins against fungal pathogens.
Planta – Springer Journals
Published: Dec 8, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.