Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Cloning and Sequencing of the Genes Encoding Cyclic Tetrasaccharide-synthesizing Enzymes from Bacillus globisporus C11

Cloning and Sequencing of the Genes Encoding Cyclic Tetrasaccharide-synthesizing Enzymes from... Abstract The genes for isomaltosyltransferase (CtsY) and 6-glucosyltransferase (CtsZ), involved in synthesis of a cyclic tetrasaccharide from α-glucan, have been cloned from the genome of Bacillus globisporus C11. The amino-acid sequence deduced from the ctsY gene is composed of 1093 residues having a signal sequence of 29 residues in its N-terminus. The ctsZ gene encodes a protein consisting of 1284 residues with a signal sequence of 35 residues. Both of the gene products show similarities to α-glucosidases belonging to glycoside hydrolase family 31 and conserve two aspartic acids corresponding to the putative catalytic residues of these enzymes. The two genes are linked together, forming ctsYZ. The DNA sequence of 16,515 bp analyzed in this study contains four open reading frames (ORFs) upstream of ctsYZ and one ORF downstream. The first six ORFs, including ctsYZ, form a gene cluster, ctsUVWXYZ. The amino-acid sequences deduced from ctsUV are similar in to a sequence permease and a sugar-binding protein for the sugar transport system from Thermococcus sp. B1001. The third ctsW encodes a protein similar to CtsY, suggested to be another isomaltosyltransferase preferring panose to high-molecular-mass substrates. 6-glucosyltransferase, isomaltosyltransferase, cyclic tetrasaccharide, Bacillus globisporus References 1) French, D., The Schardinger dextrins. Advan. Carbohyd. Chem., 12, 189-260 (1957). 2) Hisamatsu, M., Amemura, A., Koizumi, K., Utamura, T., and Okada, Y., Structural studies on cyclic (1→2)-β-D-glucans (cyclosophoraoses) produced by Agrobacterium and Rhizobium. Carbohydr. Res., 121, 31-40 (1983). 3) Oguma, T., Tobe, K., Horiuchi, T., and Kobayashi, M., Novel cyclic sugars, cycloisomatooligosaccharides, and cycloisomaltooligosaccharide synthase. Oyo Toshitsu Kagaku (in Japanese), 41, 235-243 (1994). 4) Biely, P., Cote, G. L., and Burgess-Cassler, A., Purification and properties of alternanase, a novel endo-α-1,3-α-1,6-D-glucanase. Eur. J. Biochem., 226, 633-639 (1994). 5) Cote, G. L. and Biely, P., Enzymically produced cyclic α-1,3-linked and α-1,6-linked oligosaccharides of D-glucose. Eur. J. Biochem., 226, 641-648 (1994). 6) Bradbrook, G. M., Gessler, K., Cote, G. L., Momany, F., Biely, P., Bordet, P., Perez, S., and Imberty, A., X-ray structure determination and modeling of the cyclic tetrasaccharide cyclo-(→6)-α- D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D- Glcp-(1→). Carbohydr. Res., 329, 655-665 (2000). 7) Kubota, M., Nishimoto, T., Aga, H., Fukuda, S., and Miyake, T., PCT Int. Appl., MO 01/90338 (May. 22, 2001). 8) Kubota, M., Tsusaki, K., Higashiyama, T., Fukuda, S., and Miyake, T., PCT Int. Appl., MO 02/10361 (July. 25, 2001). 9) Hashimoto, Y., Yamamoto, T., Fujiwara, S., Takagi, M., and Imanaka, T., Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J. Bacteriol., 183, 5050-5057 (2001). 10) Saito, H. and Miura, K., Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochem. Biophys. Acta, 72, 619-629 (1963). 11) Birnboim, H. C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res., 7, 1513-1523 (1979). 12) Maniatis, T., Fritsch, E. F., and Sambrook, J., in Molecular cloning: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y. (1982). 13) Palva, I., Pettersson, R. F., Kalkkinen, N., Lehtovaara, P., Sarvas, M., Soderlund, H., Takkinen, K., and Kaariainen, L., Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the α-amylase gene from Bacillus amyloliquefaciens. Gene, 15, 43-51 (1981). 14) Neu, H, C. and Heppel, L. A., The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem., 240, 3685-3692 (1965). 15) Hunziker, W., Spiess, M., Semenza, G., and Lodish, H. F., The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell, 46, 227-234 (1986). 16) Henrissat, B. and Davies, G., Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol., 7, 637-644 (1997). 17) Kimura, A., Structure and catalytic mechanism of crystalline α-glucosidase from Aspergillus niger. J. Appl. Glycosci. (in Japanese), 45, 71-79 (1998). 18) Iwai, A., Ito, H., Mizuno, T., Mori, H., Matsui, H., Honma, M., Okada, G., and Chiba, S., Molecular cloning and expression of an isomalto-dextranase gene from Arthrobacter globiformis T6. J. Bacteriol., 176, 7730-7734 (1994). 19) Kellett, L. E., Poole, D. M., Ferreira, L. M., Durrant, A. J., Hazlewood, G. P., and Gilbert, H. J., Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem. J., 272, 369-376 (1990). 20) Millward-Sadler, S. J., Hall, J., Black, G. W., Hazlewood, G. P., and Gilbert, H. J., Evidence that the Piromyces gene family encoding endo-1,4-mannanases arose through gene duplication. FEMS Microbiol. Lett., 141, 183-188 (1996). 21) Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S., and Horikoshi, K., Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res., 28, 4317-4331 (2000). 22) Saurin, W., Koster, W., and Dassa, E., Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol. Microbiol., 12, 993-1004 (1994). 23) Barnett, M. J., Fisher, R. F., Jones, T., Komp, C., Abola, A. P., Barloy-Hubler, F., Bowser, L., Capela, D., Galibert., F., Gouzy, J., Gurjal, M., Hong, A., Huizar, L., Hyman, R. W., Kahn, D., Kahn, M. L., Kalman, S., Keating, D. H., Palm, C., Reck, M. C., Surzycki, R., Wells, D. H., Yeh, K.-C., Davis, R. W., Federspiel, N. A., and Long, S. R., Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. U.S.A., 98, 9883-9888 (2001). 24) Naggert, J., Williams, B., Cashman, D. P., and Smith, S., Cloning and sequencing of the medium-chain S-acyl fatty acid synthetase thioester hydrolase cDNA from rat mammary gland. Biochem. J., 243, 597-601 (1987). 25) Nakada, T., Maruta, K., Tsusaki, K., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y., Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotech. Biochem., 59, 2210-2214 (1995). 26) Nakada, T., Maruta, K., Mitsuzumi, H., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y., Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem., 59, 2215-2218 (1995). 27) Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., and Kurimoto, M., Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim. Biophys. Acta, 1289, 10-13 (1996). 29) MacGregor, E. A., Janecek, S., and Svensson, B., Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta, 1546, 1-20 (2001). 30) Nakada, T., Kubota, M., Sakai, S., and Tsujisaka, Y., Purification and characterization of two forms of maltotetraose-forming amylase from Pseudomonas stuzeri. Agric. Biol. Chem., 54, 737-743 (1990). 31) Svensson, B., Jespersen, H., Sierks, M. R., and MacGregor, E. A., Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem. J., 264, 309-311 (1989). 32) Cote, G. L. and Ahlgren, J. A., The hydrolytic transferase action of alternanase on oligosaccharides. Carbohydr. Res., 332, 373-379 (2001). 33) Fiedler, G., Pajatsch, M., and Bock, A., Genetics of a novel starch utilization pathway present in Klebsiella oxytoca. J. Mol. Biol., 256, 279-291 (1996). 28) Yamamoto, T., Maruta, K., Watanabe, H., Yamashita, H., Kubota, M., Fukuda, S., and Kurimoto, M., Trehalose-producing operon treYZ from Arthrobacter ramosus S34. Biosci. Biotechnol. Biochem., 65, 1419-1423 (2001). PDF This content is only available as a PDF. © 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) © 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioscience Biotechnology and Biochemistry Oxford University Press

Cloning and Sequencing of the Genes Encoding Cyclic Tetrasaccharide-synthesizing Enzymes from Bacillus globisporus C11

Loading next page...
 
/lp/oxford-university-press/cloning-and-sequencing-of-the-genes-encoding-cyclic-tetrasaccharide-BqZyYf0k2o

References (31)

Publisher
Oxford University Press
Copyright
Copyright © 2022 Japan Society for Bioscience, Biotechnology, and Agrochemistry
ISSN
0916-8451
eISSN
1347-6947
DOI
10.1271/bbb.66.1057
Publisher site
See Article on Publisher Site

Abstract

Abstract The genes for isomaltosyltransferase (CtsY) and 6-glucosyltransferase (CtsZ), involved in synthesis of a cyclic tetrasaccharide from α-glucan, have been cloned from the genome of Bacillus globisporus C11. The amino-acid sequence deduced from the ctsY gene is composed of 1093 residues having a signal sequence of 29 residues in its N-terminus. The ctsZ gene encodes a protein consisting of 1284 residues with a signal sequence of 35 residues. Both of the gene products show similarities to α-glucosidases belonging to glycoside hydrolase family 31 and conserve two aspartic acids corresponding to the putative catalytic residues of these enzymes. The two genes are linked together, forming ctsYZ. The DNA sequence of 16,515 bp analyzed in this study contains four open reading frames (ORFs) upstream of ctsYZ and one ORF downstream. The first six ORFs, including ctsYZ, form a gene cluster, ctsUVWXYZ. The amino-acid sequences deduced from ctsUV are similar in to a sequence permease and a sugar-binding protein for the sugar transport system from Thermococcus sp. B1001. The third ctsW encodes a protein similar to CtsY, suggested to be another isomaltosyltransferase preferring panose to high-molecular-mass substrates. 6-glucosyltransferase, isomaltosyltransferase, cyclic tetrasaccharide, Bacillus globisporus References 1) French, D., The Schardinger dextrins. Advan. Carbohyd. Chem., 12, 189-260 (1957). 2) Hisamatsu, M., Amemura, A., Koizumi, K., Utamura, T., and Okada, Y., Structural studies on cyclic (1→2)-β-D-glucans (cyclosophoraoses) produced by Agrobacterium and Rhizobium. Carbohydr. Res., 121, 31-40 (1983). 3) Oguma, T., Tobe, K., Horiuchi, T., and Kobayashi, M., Novel cyclic sugars, cycloisomatooligosaccharides, and cycloisomaltooligosaccharide synthase. Oyo Toshitsu Kagaku (in Japanese), 41, 235-243 (1994). 4) Biely, P., Cote, G. L., and Burgess-Cassler, A., Purification and properties of alternanase, a novel endo-α-1,3-α-1,6-D-glucanase. Eur. J. Biochem., 226, 633-639 (1994). 5) Cote, G. L. and Biely, P., Enzymically produced cyclic α-1,3-linked and α-1,6-linked oligosaccharides of D-glucose. Eur. J. Biochem., 226, 641-648 (1994). 6) Bradbrook, G. M., Gessler, K., Cote, G. L., Momany, F., Biely, P., Bordet, P., Perez, S., and Imberty, A., X-ray structure determination and modeling of the cyclic tetrasaccharide cyclo-(→6)-α- D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D- Glcp-(1→). Carbohydr. Res., 329, 655-665 (2000). 7) Kubota, M., Nishimoto, T., Aga, H., Fukuda, S., and Miyake, T., PCT Int. Appl., MO 01/90338 (May. 22, 2001). 8) Kubota, M., Tsusaki, K., Higashiyama, T., Fukuda, S., and Miyake, T., PCT Int. Appl., MO 02/10361 (July. 25, 2001). 9) Hashimoto, Y., Yamamoto, T., Fujiwara, S., Takagi, M., and Imanaka, T., Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J. Bacteriol., 183, 5050-5057 (2001). 10) Saito, H. and Miura, K., Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochem. Biophys. Acta, 72, 619-629 (1963). 11) Birnboim, H. C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res., 7, 1513-1523 (1979). 12) Maniatis, T., Fritsch, E. F., and Sambrook, J., in Molecular cloning: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y. (1982). 13) Palva, I., Pettersson, R. F., Kalkkinen, N., Lehtovaara, P., Sarvas, M., Soderlund, H., Takkinen, K., and Kaariainen, L., Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the α-amylase gene from Bacillus amyloliquefaciens. Gene, 15, 43-51 (1981). 14) Neu, H, C. and Heppel, L. A., The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem., 240, 3685-3692 (1965). 15) Hunziker, W., Spiess, M., Semenza, G., and Lodish, H. F., The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell, 46, 227-234 (1986). 16) Henrissat, B. and Davies, G., Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol., 7, 637-644 (1997). 17) Kimura, A., Structure and catalytic mechanism of crystalline α-glucosidase from Aspergillus niger. J. Appl. Glycosci. (in Japanese), 45, 71-79 (1998). 18) Iwai, A., Ito, H., Mizuno, T., Mori, H., Matsui, H., Honma, M., Okada, G., and Chiba, S., Molecular cloning and expression of an isomalto-dextranase gene from Arthrobacter globiformis T6. J. Bacteriol., 176, 7730-7734 (1994). 19) Kellett, L. E., Poole, D. M., Ferreira, L. M., Durrant, A. J., Hazlewood, G. P., and Gilbert, H. J., Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem. J., 272, 369-376 (1990). 20) Millward-Sadler, S. J., Hall, J., Black, G. W., Hazlewood, G. P., and Gilbert, H. J., Evidence that the Piromyces gene family encoding endo-1,4-mannanases arose through gene duplication. FEMS Microbiol. Lett., 141, 183-188 (1996). 21) Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S., and Horikoshi, K., Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res., 28, 4317-4331 (2000). 22) Saurin, W., Koster, W., and Dassa, E., Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol. Microbiol., 12, 993-1004 (1994). 23) Barnett, M. J., Fisher, R. F., Jones, T., Komp, C., Abola, A. P., Barloy-Hubler, F., Bowser, L., Capela, D., Galibert., F., Gouzy, J., Gurjal, M., Hong, A., Huizar, L., Hyman, R. W., Kahn, D., Kahn, M. L., Kalman, S., Keating, D. H., Palm, C., Reck, M. C., Surzycki, R., Wells, D. H., Yeh, K.-C., Davis, R. W., Federspiel, N. A., and Long, S. R., Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. U.S.A., 98, 9883-9888 (2001). 24) Naggert, J., Williams, B., Cashman, D. P., and Smith, S., Cloning and sequencing of the medium-chain S-acyl fatty acid synthetase thioester hydrolase cDNA from rat mammary gland. Biochem. J., 243, 597-601 (1987). 25) Nakada, T., Maruta, K., Tsusaki, K., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y., Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotech. Biochem., 59, 2210-2214 (1995). 26) Nakada, T., Maruta, K., Mitsuzumi, H., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y., Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem., 59, 2215-2218 (1995). 27) Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., and Kurimoto, M., Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim. Biophys. Acta, 1289, 10-13 (1996). 29) MacGregor, E. A., Janecek, S., and Svensson, B., Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta, 1546, 1-20 (2001). 30) Nakada, T., Kubota, M., Sakai, S., and Tsujisaka, Y., Purification and characterization of two forms of maltotetraose-forming amylase from Pseudomonas stuzeri. Agric. Biol. Chem., 54, 737-743 (1990). 31) Svensson, B., Jespersen, H., Sierks, M. R., and MacGregor, E. A., Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem. J., 264, 309-311 (1989). 32) Cote, G. L. and Ahlgren, J. A., The hydrolytic transferase action of alternanase on oligosaccharides. Carbohydr. Res., 332, 373-379 (2001). 33) Fiedler, G., Pajatsch, M., and Bock, A., Genetics of a novel starch utilization pathway present in Klebsiella oxytoca. J. Mol. Biol., 256, 279-291 (1996). 28) Yamamoto, T., Maruta, K., Watanabe, H., Yamashita, H., Kubota, M., Fukuda, S., and Kurimoto, M., Trehalose-producing operon treYZ from Arthrobacter ramosus S34. Biosci. Biotechnol. Biochem., 65, 1419-1423 (2001). PDF This content is only available as a PDF. © 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) © 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry

Journal

Bioscience Biotechnology and BiochemistryOxford University Press

Published: Jan 1, 2002

There are no references for this article.