Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Electrogenicity, pH-Dependence, and Stoichiometry of the Proton-Sucrose Symport

Electrogenicity, pH-Dependence, and Stoichiometry of the Proton-Sucrose Symport Abstract The electrogenicity, pH-dependence, and stoichiometry of the proton-sucrose symport were examined in plasma membrane vesicles isolated from sugar beet (Beta vulgaris L. cv Great Western) leaves. Symport mediated sucrose transport was electrogenic as demonstrated by the effect of membrane potential on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of sucrose transport was observed. When membrane potential was clamped at zero with symmetric potassium concentrations and valinomycin, the rate of sucrose flux was stimulated fourfold. In the presence of a negative membrane potential, transport increased six-fold. These results are consistent with electrogenic sucrose transport which results in a net flux of positive charge into the vesicles. The effect of membrane potential on the kinetics of sucrose transport was on V max only with no apparent change in K m. Sucrose transport rates driven by membrane potential only, i.e. in the absence of ΔpH, were comparable to ΔpH-driven flux. Both membrane potential and ΔpH-driven sucrose transport were used to examine proton binding to the symport and the apparent K m for H+ was 0.7 micromolar. The kinetics of sucrose transport as a function of proton concentration exhibited a simple hyperbolic relationship. This observation is consistent with kinetic models of ion-cotransport systems when the stoichiometry of the system, ion:substrate, is 1:1. Quantitative measurements of proton and sucrose fluxes through the symport support a 1:1 stoichiometry. The biochemical details of protoncoupled sucrose transport reported here provide further evidence in support of the chemiosmotic hypothesis of nutrient transport across the plant cell plasma membrane. This content is only available as a PDF. © 1990 American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Physiology Oxford University Press

Electrogenicity, pH-Dependence, and Stoichiometry of the Proton-Sucrose Symport

Plant Physiology , Volume 93 (4) – Aug 1, 1990

Loading next page...
 
/lp/oxford-university-press/electrogenicity-ph-dependence-and-stoichiometry-of-the-proton-sucrose-Bhtj0YFlAz

References (25)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
0032-0889
eISSN
1532-2548
DOI
10.1104/pp.93.4.1590
Publisher site
See Article on Publisher Site

Abstract

Abstract The electrogenicity, pH-dependence, and stoichiometry of the proton-sucrose symport were examined in plasma membrane vesicles isolated from sugar beet (Beta vulgaris L. cv Great Western) leaves. Symport mediated sucrose transport was electrogenic as demonstrated by the effect of membrane potential on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of sucrose transport was observed. When membrane potential was clamped at zero with symmetric potassium concentrations and valinomycin, the rate of sucrose flux was stimulated fourfold. In the presence of a negative membrane potential, transport increased six-fold. These results are consistent with electrogenic sucrose transport which results in a net flux of positive charge into the vesicles. The effect of membrane potential on the kinetics of sucrose transport was on V max only with no apparent change in K m. Sucrose transport rates driven by membrane potential only, i.e. in the absence of ΔpH, were comparable to ΔpH-driven flux. Both membrane potential and ΔpH-driven sucrose transport were used to examine proton binding to the symport and the apparent K m for H+ was 0.7 micromolar. The kinetics of sucrose transport as a function of proton concentration exhibited a simple hyperbolic relationship. This observation is consistent with kinetic models of ion-cotransport systems when the stoichiometry of the system, ion:substrate, is 1:1. Quantitative measurements of proton and sucrose fluxes through the symport support a 1:1 stoichiometry. The biochemical details of protoncoupled sucrose transport reported here provide further evidence in support of the chemiosmotic hypothesis of nutrient transport across the plant cell plasma membrane. This content is only available as a PDF. © 1990 American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

Plant PhysiologyOxford University Press

Published: Aug 1, 1990

There are no references for this article.