Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
The causes of soil water repellency are still only poorly understood. It is generally assumed that hydrophobic organic compounds are responsible, but those concerned have not previously been identified by comparison between samples taken from a water repellent topsoil and the wettable subsoil. In this study we separated, characterised, and compared the organic compounds present at 4 different depths in a sandy soil under permanent grass cover that is water repellent in the upper 0.30 m but wettable below this. Soil samples were extracted using a mixture of isopropanol and aqueous ammonia (7 : 3 v : v). Samples were wettable after extraction and re-application of the extract from each sample onto wettable sand induced water repellency. The chloroform-soluble portions of the extracts were analysed by gas chromatography and gas chromatography-mass spectrometry. The compounds identified at all soil depths included long-chain carboxylic acids (C 16 –C 24 ), amides (C 14 –C 24 ), alkanes (C 25 –C 31 ), aldehydes or ketones (C 25 –C 29 ), and more complex ring-containing structures. 1 H and 13 C nuclear magnetic resonance spectroscopy, and the carbon/hydrogen ratio as determined by microanalysis, confirmed the predominantly aliphatic character of the extracts. Both wettable and water repellent samples contained hydrophobic compounds. The 3 water repellent samples contained far more organic material, although the amount extracted was not related to the degree of water repellency. Perhaps more importantly, they contained polar compounds of high relative molecular mass, which were almost absent from the wettable subsoil. It may be speculated that these are the compounds in this soil whose presence in significant amounts is necessary for water repellency to be exhibited.
Soil Research – CSIRO Publishing
Published: May 25, 2005
Keywords: hydrophobicity, gas chromatography.
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.