Access the full text.
Sign up today, get DeepDyve free for 14 days.
B. Roul, S. Mukundan, G. Chandan, L. Mohan, S. Krupanidhi (2015)
Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfacesAIP Advances, 5
E. Maril, A. Kaya, H. Çetinkaya, S. Koçyiğit, Ş. Altındal (2015)
On the temperature dependent forward bias current–voltage (I–V) characteristics in Au/2% graphene–cobalt doped (Ca3Co4Ga0.001Ox)/n-Si structureMaterials Science in Semiconductor Processing, 39
S. Duman, K. Ejderha, Ö. Yigit, A. Türüt (2012)
Determination of contact parameters of Ni/n-GaP Schottky contactsMicroelectron. Reliab., 52
H. Altuntas, Ç. Ozgit-Akgun, I. Donmez, N. Biyikli (2015)
Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin filmsJournal of Applied Physics, 117
J. Werner, H. Güttler (1991)
Barrier inhomogeneities at Schottky contactsJournal of Applied Physics, 69
Yapeng Li, L. Fu, Jie Sun, Xiaozhen Wang (2015)
Study of barrier height and trap centers of Au/n-Hg3In2Te6 Schottky contacts by current-voltage (I-V) characteristics and deep level transient spectroscopyJournal of Applied Physics, 117
Z. Ouennoughi, S. Toumi, R. Weiss (2015)
Study of barrier inhomogeneities using I–V–T characteristics of Mo/4H–SiC Schottky diodePhysica B-condensed Matter, 456
A. Ali, H. Madan, S. Koveshnikov, S. Datta (2009)
Small Signal Response of Inversion Layers in High Mobility In0.53Ga0.47As MOSFETs Made with Thin High-k Dielectrics, 25
M. Biber, C. Temirci, A. Turut (2002)
Barrier height enhancement in the Au/n-GaAs Schottky diodes with anodization processJournal of Vacuum Science & Technology B, 20
R. Tung (1992)
Electron transport at metal-semiconductor interfaces: General theory.Physical review. B, Condensed matter, 45 23
H. Card, E. Rhoderick (1971)
Studies of tunnel MOS diodes II. Thermal equilibrium considerationsJournal of Physics D, 4
B. Güzeldir, M. Saglam (2015)
Temperature dependent electrical properties of Cd/CdS/n-Si/Au-Sb structuresMaterials Science in Semiconductor Processing, 30
J. Osvald, Z. Horváth (2004)
Theoretical study of the temperature dependence of electrical characteristics of Schottky diodes with an inverse near-surface layerApplied Surface Science, 234
D. Korucu, A. Turut, H. Efeoǧlu (2013)
Temperature dependent I–V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s modelPhysica B-condensed Matter, 414
M. Biber, C. Coşkun, A. Turut (2005)
Current-voltage-temperature analysis of inhomogeneous Au/n-GaAs Schottky contactsEuropean Physical Journal-applied Physics, 31
E. Dobročka, J. Osvald (1994)
INFLUENCE OF BARRIER HEIGHT DISTRIBUTION ON THE PARAMETERS OF SCHOTTKY DIODESApplied Physics Letters, 65
Y. Xuan, Hung-Chun Lin, P. Ye (2007)
Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High- $\kappa$ DielectricsIEEE Transactions on Electron Devices, 54
O. Dhibi, A. Ltaief, N. Chaaben, A. Bouazizi (2014)
Effect of thin gold interlayer on the electrical and dielectrical behaviors of ITO/MEH-PPV/Al structuresMicroelectronic Engineering, 129
Yang Xu, Cheng-En Cheng, Sichao Du, Jianyi Yang, Bin Yu, Jack Luo, Wenyan Yin, Erping Li, S. Dong, P. Ye, X. Duan (2016)
Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and p-n Heterojunctions.ACS nano, 10 5
Z. Ahmad, M. Sayyad (2009)
Extraction of electronic parameters of Schottky diode based on an organic semiconductor methyl-redPhysica E-low-dimensional Systems & Nanostructures, 41
M. Mayimele, M. Diale, W. Mtangi, F. Auret (2015)
Temperature-dependent current-voltage characteristics of Pd/ZnO Schottky barrier diodes and the determination of the Richardson constantMaterials Science in Semiconductor Processing, 34
J. Sullivan, R. Tung, M. Pinto, W. Graham (1991)
Electron transport of inhomogeneous Schottky barriers: A numerical studyJournal of Applied Physics, 70
Ş. Altındal (2015)
On the origin of increase in the barrier height and decrease in ideality factor with increase temperature in Ag/SiO2/p-Si (MIS) Schottky Barrier Diodes (SBDs), 1
P. Gammon, A. Pérez‐Tomás, V. Shah, O. Vavasour, Evgeniy Donchev, J. Pang, M. Myronov, C. Fisher, M. Jennings, D. Leadley, P. Mawby (2013)
Modelling the inhomogeneous SiC Schottky interfaceJournal of Applied Physics, 114
E. El-Menyawy, A. Ashery (2014)
Current–voltage characteristics and inhomogeneous barrier height analysis of Au/poly(o-toluidine)/p-Si/Al heterojunction diodeJournal of Materials Science: Materials in Electronics, 25
V. Afanas'ev, A. Stesmans, G. Brammertz, A. Delabie, S. Sionke, A. O'Mahony, I. Povey, M. Pemble, E. O'Connor, P. Hurley, S. Newcomb (2009)
Energy barriers at interfaces between (100) InxGa1−xAs (0≤x≤0.53) and atomic-layer deposited Al2O3 and HfO2Applied Physics Letters, 94
S. Stemmer, V. Chobpattana, S. Rajan (2012)
Frequency dispersion in III-V metal-oxide-semiconductor capacitorsApplied Physics Letters, 100
U. Parihar, J. Ray, C. Panchal, N. Padha (2016)
Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodesApplied Physics A, 122
H. Chou, V. Afanas’ev, M. Houssa, A. Stesmans, Lin Dong, P. Ye (2012)
Electron band alignment at the interface of (100)InSb with atomic-layer deposited Al2O3Applied Physics Letters, 101
ATurut, AKarabulut (2015)
Capacitance–conductance characteristics of Au/Ti/Al2O3/n-GaAs structures with very thin Al2O3 interfacial layer
J. Peng, C. Song, B. Cui, F. Li, H. Mao, G. Wang, F. Pan (2015)
Manipulation of orbital occupancy by ferroelectric polarization in LaNiO3/BaTiO3−δ heterostructuresApplied Physics Letters, 107
Z. Horváth (1996)
Comment on “Analysis of I-V measurements on CrSi2Si Schottky structures in a wide temperature range”Solid-state Electronics, 39
S. Mohammad (2005)
Contact mechanisms and design principles for Schottky contacts to group-III nitridesJournal of Applied Physics, 97
Yanqing Wu, Min Xu, P. Ye, Zhiyuan Cheng, Jizhong Li, Ji-Soo Park, J. Hydrick, J. Bai, M. Carroll, J. Fiorenza, Anthony Lochtefeld (2008)
Atomic-layer-deposited Al2O3/GaAs metal-oxide-semiconductor field-effect transistor on Si substrate using aspect ratio trapping techniqueApplied Physics Letters, 93
E. Ayyildiz, A. Turut (1999)
The effect of thermal treatment on the characteristic parameters of Ni/-, Ti/- and NiTi alloy/n-GaAs Schottky diodesSolid-state Electronics, 43
S. Alialy, A. Kaya, E. Maril, Ş. Altındal, I. Uslu (2015)
Electronic transport of Au/(Ca1.9Pr0.1Co4Ox)/n-Si structures analysed over a wide temperature rangePhilosophical Magazine, 95
S. Ashok, J. Borrego, R. Gutmann (1979)
Electrical characteristics of GaAs MIS Schottky diodesSolid-state Electronics, 22
S. Asubay, M. Genişel, Y. Ocak (2014)
Electrical parameters of a DC sputtered Mo/n-type 6H-SiC Schottky barrier diodeMaterials Science in Semiconductor Processing, 28
Xi Luo, Yaghoob Rahbarihagh, J. Hwang, Han Liu, Yuchen Du, P. Ye (2014)
Temporal and Thermal Stability of Al2O3-Passivated Phosphorene MOSFETsIEEE Electron Device Letters, 35
N. Nguyen, O. Kirillov, W. Jiang, Wenyong Wang, J. Suehle, P. Ye, Y. Xuan, N. Goel, K. Choi, W. Tsai, S. Sayan (2008)
Band offsets of atomic-layer-deposited Al2O3 on GaAs and the effects of surface treatmentApplied Physics Letters, 93
S. Sze, K. Ng (2006)
Metal‐Semiconductor Contacts
H. Grubin (1979)
The physics of semiconductor devicesIEEE Journal of Quantum Electronics, 15
J. Osvald (1999)
Numerical study of electrical transport in inhomogeneous Schottky diodesJournal of Applied Physics, 85
Cheng-Ying Huang, Sanghoon Lee, D. Cohen-Elias, J. Law, A. Carter, V. Chobpattana, S. Stemmer, A. Gossard, M. Rodwell (2013)
Reduction of leakage current in In0.53Ga0.47As channel metal-oxide-semiconductor field-effect-transistors using AlAs0.56Sb0.44 confinement layersApplied Physics Letters, 103
A. Turut, A. Karabulut, K. Ejderha, N. Biyikli (2015)
Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structuresMaterials Science in Semiconductor Processing, 39
H. Chou, E. O'Connor, P. Hurley, V. Afanas’ev, M. Houssa, A. Stesmans, P. Ye, S. Newcomb (2012)
Interface barriers at the interfaces of polar GaAs(111) faces with Al2O3Applied Physics Letters, 100
Xiao Sun, T. Ma (2013)
Electrical Characterization of Gate Traps in FETs With Ge and III–V ChannelsIEEE Transactions on Device and Materials Reliability, 13
A. Akkaya, L. Esmer, Tuncay Karaaslan, H. Çetin, E. Ayyildiz (2014)
Electrical characterization of Ni/Al0.09Ga0.91N Schottky barrier diodes as a function of temperatureMaterials Science in Semiconductor Processing, 28
Murat Gülnahar, T. Karacali, H. Efeoǧlu (2015)
Porous Si Based Al Schottky Structures on p+-Si: A Possible Way for Nano Schottky FabricationElectrochimica Acta, 168
C. Hinkle, M. Milojević, B. Brennan, A. Sonnet, F. Aguirre-Tostado, G. Hughes, E. Vogel, R. Wallace (2009)
Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinningApplied Physics Letters, 94
M. Benamara, M. Anani, B. Akkal, Z. Benamara (2014)
Ni/SiC–6H Schottky Barrier Diode interfacial states characterization related to temperatureJournal of Alloys and Compounds, 603
E. Chagarov, A. Kummel (2011)
Density functional theory simulations of amorphous high-κ oxides on a compound semiconductor alloy: a-Al2O3/InGaAs(100)-(4×2), a-HfO2/InGaAs(100)-(4×2), and a-ZrO2/InGaAs(100)-(4×2).The Journal of chemical physics, 135 24
M. Reddy, P. Puneetha, V. Reddy, Jung-Hee Lee, Seong-Hoon Jeong, Chinho Park (2016)
Temperature-Dependent Electrical Properties and Carrier Transport Mechanisms of TMAH-Treated Ni/Au/Al2O3/GaN MIS DiodeJournal of Electronic Materials, 45
F. Jones, Ben Wood, J. Myers, C. Daniels-Hafer, M. Lonergan (1999)
Current transport and the role of barrier inhomogeneities at the high barrier n-InP | poly(pyrrole) interfaceJournal of Applied Physics, 86
A. Venter, D. Murape, J. Botha, F. Auret (2015)
Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurementsThin Solid Films, 574
K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskelä (2002)
Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursorsThin Solid Films, 416
(2015)
Au/2% graphene-cobalt doped (Ca 3 Co 4 Ga 0:001 O x //n-Si structure
Yu-Cheng Chang, M. Huang, P. Chang, Chia‐Chun Lin, Y. Chu, Bor-Rong Chen, C. Hsu, J. Kwo, T. Pi, M. Hong (2011)
Electrical properties and interfacial chemical environments of in situ atomic layer deposited Al2O3 on freshly molecular beam epitaxy grown GaAsMicroelectronic Engineering, 88
Yiqin Wu, P. Ye, G. Wilk, Bobby Yang (2006)
GaN metal-oxide-semiconductor field-effect-transistor with atomic layer deposited Al2O3 as gate dielectricMaterials Science and Engineering B-advanced Functional Solid-state Materials, 135
H. Card, E. Rhoderick (1971)
Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodesJournal of Physics D, 4
S. Kowalczyk, J. Waldrop, R. Grant (1981)
Reactivity and interface chemistry during Schottky-barrier formations: Metals on thin native oxides of GaAs investigated by x-ray photoelectron spectroscopyApplied Physics Letters, 38
R. Tung (2014)
The physics and chemistry of the Schottky barrier heightApplied physics reviews, 1
Y. Song, R. Meirhaeghe, W. Laflere, F. Cardon (1986)
On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriersSolid-state Electronics, 29
K. Cheong, J. Moon, H. Kim, W. Bahng, N. Kim (2008)
Current conduction mechanisms in atomic-layer-deposited HfO2/nitrided SiO2 stacked gate on 4H silicon carbideJournal of Applied Physics, 103
H. Doğan, N. Yıldırım, A. Turut, M. Biber, E. Ayyildiz, Ç. Nuhoǧlu (2006)
Determination of the characteristic parameters of Sn/n-GaAs/Al–Ge Schottky diodes by a barrier height inhomogeneity modelSemiconductor Science and Technology, 21
E. El-Menyawy (2015)
Electrical and photovoltaic properties of Gaussian distributed inhomogeneous barrier based on tris(8-hydroxyquinoline) indium/p-si interfaceMaterials Science in Semiconductor Processing, 32
A. Gümüş, Ş. Altındal (2014)
Current-transport mechanisms in gold/polypyrrole/n-silicon Schottky barrier diodes in the temperature range of 110–360 KMaterials Science in Semiconductor Processing, 28
W. Mönch (2014)
On the band-structure lineup at Schottky contacts and semiconductor heterostructuresMaterials Science in Semiconductor Processing, 28
N. Elghoul, S. Kraiem, R. Jemai, B. Zebentout, K. Khirouni (2015)
Annealing effects on electrical and optical properties of a-Si:H layer deposited by PECVDMaterials Science in Semiconductor Processing, 40
W. Mönch (1993)
Semiconductor Surfaces and Interfaces
I. Kaufmann, M. Pereira, H. Boudinov (2015)
Schottky barrier height of Ni/TiO2/4H-SiC metal-insulator-semiconductor diodesSemiconductor Science and Technology, 30
Ajay Kumar, L. Rao, V. Reddy, Chel-Jong Choi (2013)
Analysis of electrical characteristics of Er/p-InP Schottky diode at high temperature rangeCurrent Applied Physics, 13
V. Chobpattana, E. Mikheev, J. Zhang, T. Mates, S. Stemmer (2014)
Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densitiesJournal of Applied Physics, 116
N. Biyikli, A. Karabulut, Hasan Efeolu, B. Guzeldir, A. Turut (2014)
Electrical characteristics of Au/Ti/n-GaAs contacts over a wide measurement temperature rangePhysica Scripta, 89
L.M.O. Berghe, R. Meirhaeghe, W. Laflere, F. Cardon (1990)
On the electrical properties, the interfacial reactivity and the thermal stability of CoSi2/-, TiSi2/-, Co/- and Ti/p-InP Schottky barriersSolid-state Electronics, 33
L. Dong, X. Wang, J. Zhang (2013)
GaAs Enhancement-mode NMOSFETs Enabled by Atomic Layer Epitaxial La 1 . 8 Y 0 . 2 O 3 as Dielectric
G. Wilk, R. Wallace, J. Anthony (2001)
High-κ gate dielectrics: Current status and materials properties considerationsJournal of Applied Physics, 89
W. Leroy, K. Opsomer, S. Forment, R. Meirhaeghe (2005)
The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodesSolid-state Electronics, 49
S. Chand, J. Kumar (1996)
On the existence of a distribution of barrier heights in Pd2Si/Si Schottky diodesJournal of Applied Physics, 80
N. Kavasoğlu, A. Kavasoglu, B. Metin (2015)
A different approach to solar cell simulationMaterials Research Bulletin, 70
Lixin Dong, Xinwei Wang, Jingyun Zhang, X. Li, Roy Gordon, P. Ye (2013)
GaAs Enhancement-Mode NMOSFETs Enabled by Atomic Layer Epitaxial $\hbox{La}_{1.8}\hbox{Y}_{0.2}\hbox{O}_{3}$ as DielectricIEEE Electron Device Letters, 34
K. Ejderha, N. Yildirm, A. Turut (2014)
Temperature-dependent current-voltage characteristics in thermally annealed ferromagnetic Co/n-GaN Schottky contactsEuropean Physical Journal-applied Physics, 68
M. Huang, Y. Chang, Y. Chang, Tzu‐Ying Lin, J. Kwo, M. Hong (2009)
Energy-band parameters of atomic layer deposited Al2O3 and HfO2 on InxGa1−xAsApplied Physics Letters, 94
D. Donoval, M. Barus, M. Ždímal (1991)
Analysis of I-V measurements on PtSi-Si Schottky structures in a wide temperature rangeSolid-state Electronics, 34
S. Sayan, R. Bartynski, Xinyuan Zhao, E. Gusev, D. Vanderbilt, M. Croft, M. Holl, E. Garfunkel (2004)
Valence and conduction band offsets of a ZrO2/SiOxNy/n‐Si CMOS gate stack: A combined photoemission and inverse photoemission studyphysica status solidi (b), 241
Jingjing Peng, C. Song, Fangsen Li, B. Cui, H. Mao, Yuyan Wang, Guangyue Wang, F. Pan (2015)
Charge Transfer and Orbital Reconstruction in Strain-Engineered (La,Sr)MnO3/LaNiO3 Heterostructures.ACS applied materials & interfaces, 7 32
A. Türüt, B. Bati, Ali Kökce, M. Saglam, Necati Yalçın (1996)
The bias-dependence change of barrier height of Schottky diodes under forward bias by including the series resistance effectPhysica Scripta, 53
D. Korucu, S. Duman (2013)
Current–voltage–temperature characteristics of Au/p-InP Schottky barrier diodeThin Solid Films, 531
V. Chobpattana, T. Mates, W. Mitchell, J. Zhang, S. Stemmer (2013)
Influence of plasma-based in-situ surface cleaning procedures on HfO2/In0.53Ga0.47As gate stack propertiesJournal of Applied Physics, 114
Hogyoung Kim, C. Jung, Se Kim, Yunae Cho, Dong-Wook Kim (2016)
A comparative electrical transport study on Cu/n-type InP Schottky diode measured at 300 and 100 KCurrent Applied Physics, 16
H. Efeoǧlu, A. Turut (2013)
THE CURRENT–VOLTAGE CHARACTERISTICS OF THE Au/MBEn-GaAs SCHOTTKY DIODES IN A WIDE TEMPERATURE RANGEInternational Journal of Modern Physics B, 27
The Au/Ti/n-GaAs structures with and without Al2O3 interfacial layer have been fabricated. The Al2O3 interfacial layer has been formed on the GaAs substrate by atomic layer deposition. The effects of the interfacial layer on the current–voltage (I–V) and capacitance–voltage (C–V) characteristics of the devices have been investigated in the temperature range of 60–300 K. It has been seen that the carrier concentration from C–V characteristics for the MIS (metal/insulating layer/semiconductor) diode with Al2O3 interfacial layer has a higher value than that for the reference diode without the Al2O3 interfacial layer (MS). Such a difference in the doping concentration has been attributed not to doping variation in the semiconductor bulk but to the presence of the Al2O3 interfacial layer because both diodes have been made on the pieces cut from the same n-type GaAs wafer. The temperature-dependent I–V characteristics of the MIS diode do not obey the thermionic emission current theory because of the presence of the Al2O3 layer. An electron tunneling factor, , value of 20.64 has been found from the I–V–T data of the MIS diode. An average value of 0.627 eV for the mean tunneling barrier height, χ, presented by the Al2O3 layer has been obtained.
Journal of Semiconductors – IOP Publishing
Published: Jun 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.