Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal transduction cascade.

Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal... Mothers against dpp (Mad) is the prototype of a family of genes required for signaling by TGF-beta related ligands. In Drosophila, Mad is specifically required in cells responding to Decapentaplegic (DPP) signals. We further specify the role of Mad in DPP-mediated signaling by utilizing tkvQ199D, an activated form of the DPP type I receptor serine-threonine kinase thick veins (tkv). In the embryonic midgut, tkvQ199D mimics DPP-mediated inductive interactions. Homozygous Mad mutations block signaling by tkvQ199D. Appropriate responses to signaling by tkvQ199D are restored by expression of MAD protein in DPP-target cells. Endogenous MAD is phosphorylated in a ligand-dependent manner in Drosophila cell culture. DPP overexpression in the embryonic midgut induces MAD nuclear accumulation; after withdrawal of the overexpressed DPP signal, MAD is detected only in the cytoplasm. However, in three different tissues and developmental stages actively responding to endogenous DPP, MAD protein is detected in the cytoplasm but not in the nucleus. From these observations, we discuss possible roles for MAD in a DPP-dependent serine-threonine kinase signal transduction cascade integral to the proper interpretation of DPP signals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Development Pubmed

Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal transduction cascade.

Development , Volume 124 (16): -3090 – Sep 10, 1997

Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal transduction cascade.


Abstract

Mothers against dpp (Mad) is the prototype of a family of genes required for signaling by TGF-beta related ligands. In Drosophila, Mad is specifically required in cells responding to Decapentaplegic (DPP) signals. We further specify the role of Mad in DPP-mediated signaling by utilizing tkvQ199D, an activated form of the DPP type I receptor serine-threonine kinase thick veins (tkv). In the embryonic midgut, tkvQ199D mimics DPP-mediated inductive interactions. Homozygous Mad mutations block signaling by tkvQ199D. Appropriate responses to signaling by tkvQ199D are restored by expression of MAD protein in DPP-target cells. Endogenous MAD is phosphorylated in a ligand-dependent manner in Drosophila cell culture. DPP overexpression in the embryonic midgut induces MAD nuclear accumulation; after withdrawal of the overexpressed DPP signal, MAD is detected only in the cytoplasm. However, in three different tissues and developmental stages actively responding to endogenous DPP, MAD protein is detected in the cytoplasm but not in the nucleus. From these observations, we discuss possible roles for MAD in a DPP-dependent serine-threonine kinase signal transduction cascade integral to the proper interpretation of DPP signals.

Loading next page...
 
/lp/pubmed/mothers-against-dpp-participates-in-a-ddp-tgf-beta-responsive-serine-B5KE05KQG0

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0950-1991
DOI
10.1242/dev.124.16.3167
pmid
9272957

Abstract

Mothers against dpp (Mad) is the prototype of a family of genes required for signaling by TGF-beta related ligands. In Drosophila, Mad is specifically required in cells responding to Decapentaplegic (DPP) signals. We further specify the role of Mad in DPP-mediated signaling by utilizing tkvQ199D, an activated form of the DPP type I receptor serine-threonine kinase thick veins (tkv). In the embryonic midgut, tkvQ199D mimics DPP-mediated inductive interactions. Homozygous Mad mutations block signaling by tkvQ199D. Appropriate responses to signaling by tkvQ199D are restored by expression of MAD protein in DPP-target cells. Endogenous MAD is phosphorylated in a ligand-dependent manner in Drosophila cell culture. DPP overexpression in the embryonic midgut induces MAD nuclear accumulation; after withdrawal of the overexpressed DPP signal, MAD is detected only in the cytoplasm. However, in three different tissues and developmental stages actively responding to endogenous DPP, MAD protein is detected in the cytoplasm but not in the nucleus. From these observations, we discuss possible roles for MAD in a DPP-dependent serine-threonine kinase signal transduction cascade integral to the proper interpretation of DPP signals.

Journal

DevelopmentPubmed

Published: Sep 10, 1997

There are no references for this article.