Access the full text.
Sign up today, get DeepDyve free for 14 days.
Harindranath Kadavath, Romina Hofele, J. Biernat, Satish Kumar, Katharina Tepper, H. Urlaub, E. Mandelkow, M. Zweckstetter (2015)
Tau stabilizes microtubules by binding at the interface between tubulin heterodimersProceedings of the National Academy of Sciences, 112
G. Leuba, A. Savioz, A. Vernay, B. Carnal, R. Kraftsik, E. Tardif, I. Riederer, B. Riederer (2008)
Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein.Journal of Alzheimer's disease : JAD, 15 1
M. Sherman, S. Lesné (2011)
Detecting aβ*56 oligomers in brain tissues.Methods in molecular biology, 670
Jamie Walker, Shiva Dehkordi, Anna Fracassi, A. VanSchoiack, A. Pavenko, G. Taglialatela, Randall Woltjer, Timothy Richardson, Habil Zare, Miranda Orr (2022)
Differential protein expression in the hippocampi of resilient individuals identified by digital spatial profilingActa Neuropathologica Communications, 10
Peter Teravskis, Breeta Oxnard, Eric Miller, Lisa Kemper, K. Ashe, D. Liao (2019)
Phosphorylation in two discrete tau domains regulates a stepwise process leading to postsynaptic dysfunctionThe Journal of Physiology, 599
Caitlin Latimer, C. Keene, M. Flanagan, L. Hemmy, K. Lim, L. White, K. Montine, T. Montine (2017)
Resistance to Alzheimer Disease Neuropathologic Changes and Apparent Cognitive Resilience in the Nun and Honolulu-Asia Aging StudiesJournal of Neuropatholgy & Experimental Neurology, 76
Yong-bo Hu, E. Dammer, Ru-jing Ren, Gang Wang (2015)
The endosomal-lysosomal system: from acidification and cargo sorting to neurodegenerationTranslational Neurodegeneration, 4
L. Ittner, T. Fath, Y. Ke, Mian Bi, Janet Eersel, Kong Li, P. Gunning, J. Götz (2008)
Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementiaProceedings of the National Academy of Sciences, 105
Eleanor Pickett, C. Henstridge, Elizabeth Allison, Rose Pitstick, A. Pooler, Susanne Wegmann, G. Carlson, B. Hyman, T. Spires-Jones (2017)
Spread of tau down neural circuits precedes synapse and neuronal loss in the rTgTauEC mouse model of early Alzheimer's diseaseSynapse (New York, N.y.), 71
S. Ding, G. Hoesen (2015)
Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of Cyto‐ and chemoarchitectureJournal of Comparative Neurology, 523
Guang Yang, F. Pan, W. Gan (2009)
Stably maintained dendritic spines are associated with lifelong memoriesNature, 462
G. Hoesen, B. Hyman, A. Damasio (1991)
Entorhinal cortex pathology in Alzheimer's diseaseHippocampus, 1
Chris Merritt, Giang Ong, S. Church, K. Barker, P. Danaher, G. Geiss, M. Hoang, Jaemyeong Jung, Yan Liang, Jill McKay-Fleisch, Karen Nguyen, Z. Norgaard, K. Sorg, Isaac Sprague, C. Warren, S. Warren, Philippa Webster, Zoey Zhou, D. Zollinger, D. Dunaway, G. Mills, J. Beechem (2020)
Multiplex digital spatial profiling of proteins and RNA in fixed tissueNature Biotechnology, 38
K. Gylys, J. Fein, Fusheng Yang, D. Wiley, C. Miller, G. Cole (2004)
Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence.The American journal of pathology, 165 5
T. Chater, Y. Goda (2014)
The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticityFrontiers in Cellular Neuroscience, 8
B. James, R. Wilson, P. Boyle, J. Trojanowski, D. Bennett, J. Schneider (2016)
TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia.Brain : a journal of neurology, 139 11
Peter Teravskis, K. Ashe, D. Liao (2020)
The Accumulation of Tau in Postsynaptic Structures: A Common Feature in Multiple Neurodegenerative Diseases?The Neuroscientist, 26
Jochen Eidenmüller, T. Fath, Thorsten Maas, M. Pool, E. Sontag, R. Brandt (2001)
Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein.The Biochemical journal, 357 Pt 3
H. Braak, E. Braak (2004)
Neuropathological stageing of Alzheimer-related changesActa Neuropathologica, 82
J. Luna-Muñoz, F. García-Sierra, V. Falcón, Ivón Menéndez, L. Chávez-Macías, R. Mena (2005)
Regional conformational change involving phosphorylation of tau protein at the Thr231, precedes the structural change detected by Alz-50 antibody in Alzheimer's disease.Journal of Alzheimer's disease : JAD, 8 1
I. Grundke‐Iqbal, K. Iqbal, M. Quinlan, Y. Tung, M. Zaidi, H. Wiśniewski (1986)
Microtubule-associated protein tau. A component of Alzheimer paired helical filaments.The Journal of biological chemistry, 261 13
Brian Cummings, C. Pike, R. Shankle, C. Cotman (1996)
β-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's diseaseNeurobiology of Aging, 17
Katherine Kopeikina, M. Polydoro, Hwan‐Ching Tai, Erich Yaeger, G. Carlson, Rose Pitstick, B. Hyman, T. Spires-Jones (2013)
Synaptic alterations in the rTg4510 mouse model of tauopathyJournal of Comparative Neurology, 521
T. Montine, C. Phelps, T. Beach, E. Bigio, N. Cairns, D. Dickson, C. Duyckaerts, M. Frosch, E. Masliah, S. Mirra, P. Nelson, J. Schneider, D. Thal, J. Trojanowski, H. Vinters, B. Hyman (2011)
National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approachActa Neuropathologica, 123
M. Polydoro, C. Acker, K. Duff, P. Castillo, P. Davies (2009)
Age-Dependent Impairment of Cognitive and Synaptic Function in the htau Mouse Model of Tau PathologyThe Journal of Neuroscience, 29
J. Schneider, Z. Arvanitakis, W. Bang, D. Bennett (2007)
Mixed brain pathologies account for most dementia cases in community-dwelling older personsNeurology, 69
(1965)
Fifth Berkeley Symposium on statistics and probability
A. Schaler, Avery Runyan, Catherine Clelland, Eric Sydney, S. Fowler, H. Figueroa, S. Shioda, I. Santa-María, K. Duff, N. Myeku (2021)
PAC1 receptor–mediated clearance of tau in postsynaptic compartments attenuates tau pathology in mouse brainScience Translational Medicine, 13
A. Sengupta, J. Kabat, M. Novák, Qiongli Wu, I. Grundke‐Iqbal, Khadija Iqbal (1998)
Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules.Archives of biochemistry and biophysics, 357 2
Alejandro Martín-Belmonte, C. Aguado, Rocío Alfaro-Ruiz, M. Itakura, A. Moreno-Martínez, Luis Ossa, E. Molnár, Y. Fukazawa, R. Luján (2020)
Age-Dependent Shift of AMPA Receptors From Synapses to Intracellular Compartments in Alzheimer’s Disease: Immunocytochemical Analysis of the CA1 Hippocampal Region in APP/PS1 Transgenic Mouse ModelFrontiers in Aging Neuroscience, 12
Katarzyna Lepeta, Mychael Lourenco, Barbara Schweitzer, P. Adami, P. Banerjee, S. Catuara-Solarz, M. Revenga, A. Guillem, Mouna Haidar, O. Ijomone, Bettina Nadorp, L. Qi, Nirma Perera, Louise Refsgaard, Kimberley Reid, Mariam Sabbar, Arghyadip Sahoo, Natascha Schaefer, Rebecca Sheean, A. Suska, Rajkumar Verma, Cinzia Vicidomini, D. Wright, Xing‐Ding Zhang, C. Seidenbecher (2016)
Synaptopathies: synaptic dysfunction in neurological disorders – A review from students to studentsJournal of Neurochemistry, 138
Postsynaptic
B. Hyman, C. Phelps, T. Beach, E. Bigio, N. Cairns, M. Carrillo, D. Dickson, C. Duyckaerts, M. Frosch, E. Masliah, S. Mirra, P. Nelson, J. Schneider, D. Thal, B. Thies, J. Trojanowski, H. Vinters, T. Montine (2012)
National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's diseaseAlzheimer's & Dementia, 8
Hanna Cho, J. Choi, Mi Hwang, You Kim, Hye Lee, H. Lee, Jae Lee, Young Ryu, M. Lee, C. Lyoo (2016)
In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrumAnnals of Neurology, 80
H. White (1982)
Maximum Likelihood Estimation of Misspecified ModelsEconometrica, 50
G. Jicha, E. Lane, I. Vincent, L. Otvos, R. Hoffmann, P. Davies (1997)
A Conformation‐ and Phosphorylation‐Dependent Antibody Recognizing the Paired Helical Filaments of Alzheimer's DiseaseJournal of Neurochemistry, 69
R. Roberts, Y. Geda, D. Knopman, R. Cha, V. Pankratz, B. Boeve, R. Ivnik, E. Tangalos, R. Petersen, W. Rocca (2008)
The Mayo Clinic Study of Aging: Design and Sampling, Participation, Baseline Measures and Sample CharacteristicsNeuroepidemiology, 30
N. Ashton, T. Pascoal, T. Karikari, A. Benedet, J. Lantero-Rodríguez, G. Brinkmalm, A. Snellman, M. Schöll, C. Troakes, Abdul Hye, S. Gauthier, E. Vanmechelen, H. Zetterberg, P. Rosa-Neto, K. Blennow (2021)
Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathologyActa Neuropathologica, 141
Eric Miller, Peter Teravskis, Benjamin Dummer, Xiaohui Zhao, R. Huganir, D. Liao (2014)
Tau phosphorylation and tau mislocalization mediate soluble Aβ oligomer‐induced AMPA glutamate receptor signaling deficitsEuropean Journal of Neuroscience, 39
J. Decalf, M. Albert, James Ziai (2019)
New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissueThe Journal of Pathology, 247
Jia-Yi Li, M. Plomann, P. Brundin (2003)
Huntington's disease: a synaptopathy?Trends in molecular medicine, 9 10
(2004)
Synaptic changes in Alzheimer's disease: Increased J. Lilek et al. / Postsynaptic pTau231 in AD 259
M. Mielke, Clinton Hagen, A. Wennberg, D. Airey, R. Savica, D. Knopman, M. Machulda, R. Roberts, C. Jack, R. Petersen, J. Dage (2017)
Association of Plasma Total Tau Level With Cognitive Decline and Risk of Mild Cognitive Impairment or Dementia in the Mayo Clinic Study on AgingJAMA Neurology, 74
H. Man, Jerry Lin, W. Ju, G. Ahmadian, Lidong Liu, L. Becker, M. Sheng, Y. Wang (2000)
Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor InternalizationNeuron, 25
M. Schöll, S. Lockhart, Daniel Schonhaut, J. O’Neil, M. Janabi, R. Ossenkoppele, S. Baker, J. Vogel, J. Faria, H. Schwimmer, G. Rabinovici, W. Jagust (2016)
PET Imaging of Tau Deposition in the Aging Human BrainNeuron, 89
P. Sluijs, C. Hoogenraad (2011)
New insights in endosomal dynamics and AMPA receptor trafficking.Seminars in cell & developmental biology, 22 5
G. Glenner, Caine Wong (1984)
Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein.Biochemical and biophysical research communications, 122 3
Hendrik Wesseling, Waltraud Mair, Mukesh Kumar, Christoph Schlaffner, Shaojun Tang, Pieter Beerepoot, B. Fatou, Amanda Guise, Long Cheng, S. Takeda, J. Muntel, Melissa Rotunno, S. Dujardin, P. Davies, K. Kosik, B. Miller, S. Berretta, J. Hedreen, L. Grinberg, W. Seeley, B. Hyman, H. Steen, J. Steen (2020)
Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s DiseaseCell, 183
Xin Wang, Yingjun Zhao, Xiaofei Zhang, Hedieh Badie, Ying Zhou, Yangling Mu, L. Loo, Lei Cai, Robert Thompson, Bo Yang, Yaomin Chen, P. Johnson, Chengbiao Wu, G. Bu, W. Mobley, Dongxian Zhang, F. Gage, B. Ranscht, Yun-wu Zhang, S. Lipton, W. Hong, Huaxi Xu (2013)
Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction via modulation of glutamate receptor recycling in Down syndromeNature medicine, 19
(2023)
Final dataset 1. Zenodo data Repository at https://zenodo.org/record/7516449#.Y7w6vezMLzc
K. Cosker, R. Segal (2014)
Neuronal signaling through endocytosis.Cold Spring Harbor perspectives in biology, 6 2
C. Lasagna-Reeves, D. Castillo-Carranza, U. Sengupta, Audra Clos, G. Jackson, R. Kayed (2011)
Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type miceMolecular Neurodegeneration, 6
C. Weaver, Marisol Espinoza, Y. Kress, P. Davies (2000)
Conformational change as one of the earliest alterations of tau in Alzheimer’s diseaseNeurobiology of Aging, 21
Luis Gomes, Valerie Uytterhoeven, Diego Lopez-Sanmartin, Sandra Tomé, T. Tousseyn, R. Vandenberghe, M. Vandenbulcke, C. Arnim, P. Verstreken, D. Thal (2021)
Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formationActa Neuropathologica, 141
P. Tacik, Monica Sanchez-Contreras, M. DeTure, M. Murray, R. Rademakers, Owen Ross, Z. Wszolek, Joseph Parisi, D. Knopman, R. Petersen, D. Dickson (2017)
Clinicopathologic heterogeneity in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP‐17) due to microtubule‐associated protein tau (MAPT) p.P301L mutation, including a patient with globular glial tauopathyNeuropathology and Applied Neurobiology, 43
Xiaohui Zhao, L. Kotilinek, Benjamin Smith, Chris Hlynialuk, K. Zahs, M. Ramsden, J. Cleary, K. Ashe (2016)
Caspase-2 cleavage of tau reversibly impairs memoryNature Medicine, 22
R. Petersen (2004)
Mild cognitive impairment as a diagnostic entityJournal of Internal Medicine, 256
(2016)
2016) PET imaging of tau deposition
M. Suárez-Calvet, T. Karikari, N. Ashton, Juan Rodríguez, M. Milà-Alomà, J. Gispert, Gemma Salvadó, C. Minguillón, K. Fauria, M. Shekari, O. Grau-Rivera, E. Arenaza-Urquijo, A. Sala-Vila, G. Sánchez-Benavides, J. González-de-Echávarri, Gwendlyn Kollmorgen, E. Stoops, E. Vanmechelen, H. Zetterberg, K. Blennow, J. Molinuevo (2020)
Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detectedEMBO Molecular Medicine, 12
M. Shin, Edwin Vázquez-Rosa, Yeojung Koh, Matasha Dhar, K. Chaubey, Coral Cintrón-Pérez, Sarah Barker, Emiko Miller, Kathryn Franke, M. Noterman, D. Seth, R. Allen, Cara Motz, Sriganesh Rao, L. Skelton, M. Pardue, S. Fliesler, Chao Wang, Tara Tracy, L. Gan, D. Liebl, J. Savarraj, Glenda Torres, H. Ahnstedt, L. McCullough, Ryan Kitagawa, H. Choi, Pengyue Zhang, Y. Hou, Chienwei Chiang, Lang Li, Francisco Ortiz, Jessica Kilgore, Noelle Williams, Victoria Whitehair, T. Gefen, M. Flanagan, J. Stamler, M. Jain, Allison Kraus, F. Cheng, J. Reynolds, A. Pieper (2021)
Reducing acetylated tau is neuroprotective in brain injuryCell, 184
C. Lüscher, R. Malenka (2012)
NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD).Cold Spring Harbor perspectives in biology, 4 6
G. Mckhann, D. Knopman, H. Chertkow, B. Hyman, C. Jack, C. Kawas, W. Klunk, W. Koroshetz, J. Manly, R. Mayeux, R. Mohs, J. Morris, M. Rossor, P. Scheltens, M. Carrillo, B. Thies, S. Weintraub, C. Phelps (2011)
The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's diseaseAlzheimer's & Dementia, 7
Background:Phosphorylated cytoplasmic tau inclusions correlate with and precede cognitive deficits in Alzheimer’s disease (AD). However, pathological tau accumulation and relationships to synaptic changes remain unclear.Objective:To address this, we examined postmortem brain from 50 individuals with the full spectrum of AD (clinically and neuropathologically). Total tau, pTau231, and AMPA GluR1 were compared across two brain regions (entorhinal and middle frontal cortices), as well as clinically stratified groups (control, amnestic mild cognitive impairment, AD dementia), NIA-AA Alzheimer’s Disease Neuropathologic Change designations (Not, Low, Intermediate, High), and Braak tangle stages (1–6). Significant co-existing pathology was excluded to isolate changes attributed to pathologic AD.Methods:Synaptosomal fractionation and staining were performed to measure changes in total Tau, pTau231, and AMPA GluR1. Total Tau and pTau231 were quantified in synaptosomal fractions using Quanterix Simoa HD-X.Results:Increasing pTau231 in frontal postsynaptic fractions correlated positively with increasing clinical and neuropathological AD severity. Frontal cortex is representative of early AD, as it does not become involved by tau tangles until late in AD. Entorhinal total tau was significantly higher in the amnestic mild cognitive impairment group when compared to AD, but only after accounting for AD associated synaptic changes. Alterations in AMPA GluR1 observed in the entorhinal cortex, but not middle frontal cortex, suggest that pTau231 mislocalization and aggregation in postsynaptic structures may impair glutamatergic signaling by promoting AMPA receptor dephosphorylation and internalization.Conclusion:Results highlight the potential effectiveness of early pharmacological interventions targeting pTau231 accumulation at the postsynaptic density.
Journal of Alzheimer's Disease – IOS Press
Published: Mar 7, 2023
Keywords: Alzheimer’s disease; cognitive impairment; phosphorylated tau; PSD-95; Simoa Quanterix; synaptic dysfunction; synaptophysin; tau
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.