Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Zhihong Chen, J. Tsang, P. Avouris (2009)
Energy dissipation in graphene field-effect transistors.Nano letters, 9 5
SUPARNA DUTTASINHA, K. Novoselov (2007)
The rise of graphene.Nature materials, 6 3
J. Parrott, A. Stuckes, P. Klemens (1977)
Thermal conductivity of solidsPhysics Today, 30
L. Ebert (1996)
Science of fullerenes and carbon nanotubes
G. Basile, C. Bernardin, S. Olla (2005)
Momentum conserving model with anomalous thermal conductivity in low dimensional systems.Physical review letters, 96 20
J. Philip, P. Hess, T. Feygelson, J. Butler, S. Chattopadhyay, K. Chen, Li‐Chyong Chen (2003)
Elastic, mechanical, and thermal properties of nanocrystalline diamond filmsJournal of Applied Physics, 93
A. Khitun, A. Balandin, Jianlin Liu, Kang Wang (2000)
In-plane lattice thermal conductivity of a quantum-dot superlatticeJournal of Applied Physics, 88
Jiuning Hu, X. Ruan, Yong Chen (2009)
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.Nano letters, 9 7
M. Pettes, I. Jo, Z. Yao, Li Shi (2011)
Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene.Nano letters, 11 3
A. Reina, X. Jia, John Ho, D. Nezich, H. Son, V. Bulović, M. Dresselhaus, J. Kong (2009)
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.Nano letters, 9 1
K. Mak, C. Lui, T. Heinz (2010)
Thermal conductance at the graphene-SiO2 interface measured by optical pump-probe spectroscopyarXiv: Materials Science
Weili Liu, M. Shamsa, I. Calizo, A. Balandin, V. Ralchenko, A. Popovich, A. Saveliev (2006)
Thermal conduction in nanocrystalline diamond films : Effects of the grain boundary scattering and nitrogen dopingApplied Physics Letters, 89
A. Casher, J. Lebowitz (1971)
Heat flow in regular and disordered harmonic chainsJournal of Mathematical Physics, 12
W Bao, S. Liu, X Lei (2010)
Thermoelectric power in grapheneJournal of Physics: Condensed Matter, 22
K. Zakharchenko, J. Los, M. Katsnelson, Annalisa Fasolino (2010)
Atomistic simulations of structural and thermodynamic properties of bilayer graphenePhysical Review B, 81
J. Che, T. Çagin, W. Goddard (2000)
Thermal conductivity of carbon nanotubesNanotechnology, 11
(2010)
Thermal properties of polycrystalline graphene films and reduced graphene-oxide films
K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov (2005)
Two-dimensional gas of massless Dirac fermions in grapheneNature, 438
J. Callaway (1959)
Model for Lattice Thermal Conductivity at Low TemperaturesPhysical Review, 113
K. Mak, C. Lui, T. Heinz (2010)
Measurement of the thermal conductance of the graphene/SiO2 interfaceApplied Physics Letters, 97
K. Zhang, Y. Chai, M. Yuen, D. Xiao, P. Chan (2008)
Carbon nanotube thermal interface material for high-brightness light-emitting-diode coolingNanotechnology, 19
M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, J. Fischer (2002)
Carbon nanotube composites for thermal managementApplied Physics Letters, 80
末宗 康孝 (1976)
J.E.Parrott and A.D.Stuckes, Thermal Conductivity of Solids, Pion, London, 1975, x+157ページ, 23.5×16cm, 3,150円, 31
J. Zou, A. Balandin (2001)
Phonon heat conduction in a semiconductor nanowireJournal of Applied Physics, 89
R. Murali, Yinxiao Yang, K. Brenner, T. Beck, J. Meindl (2009)
Breakdown current density of graphene nanoribbonsApplied Physics Letters, 94
J. Ziman (2001)
Electrons and Phonons: The Theory of Transport Phenomena in Solids
J Che, T Cagin, WA Goddard (2000)
III Thermal conductivity of carbon nanotubesNanotechnology, 11
O. Narayan, S. Ramaswamy (2002)
Anomalous heat conduction in one-dimensional momentum-conserving systems.Physical review letters, 89 20
Novoselov for useful discussions. This work was supported by the Office of Naval Research (ONR) through award N00014-10-1-0224
Xuesong Li, Weiwei Cai, J. An, Seyoung Kim, J. Nah, Dongxing Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. Banerjee, L. Colombo, R. Ruoff (2009)
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper FoilsScience, 324
G. Janz, G. Gardner, U. Krebs, R. Tomkins (1974)
Molten salts: Volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension dataJournal of Physical and Chemical Reference Data, 3
A. Lippi, R. Livi (2000)
Heat Conduction in Two-Dimensional Nonlinear LatticesJournal of Statistical Physics, 100
A. Ioffe (1956)
On thermal conduction in semiconductorsIl Nuovo Cimento (1955-1965), 3
Choongho Yu, Li Shi, Z. Yao, Deyu Li, A. Majumdar (2005)
Thermal conductance and thermopower of an individual single-wall carbon nanotube.Nano letters, 5 9
AV Inyushkin, AN Taldenkov, AM Gibin, AV Gusev, HJ Pohl (2004)
Ab initio theory of the lattice thermal conductivity in diamondPhys. Status Solidi, 1
S. Subrina, Dmitri Kotchetkov, A. Balandin (2009)
Heat Removal in Silicon-on-Insulator Integrated Circuits With Graphene Lateral Heat SpreadersIEEE Electron Device Letters, 30
A. Balandin, Kang Wang (1998)
Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum wellPhysical Review B, 58
K. Shahil, V. Goyal, A. Balandin (2011)
Thermal Properties of Graphene: Applications in Thermal Interface Materials, 35
B. Persson, A. Volokitin, H. Ueba (2010)
Heat Transfer between Weakly Coupled SystemsarXiv: Materials Science
P. Klemens, D. Pedraza (1994)
Thermal conductivity of graphite in the basal planeCarbon, 32
J Hone, M Whitney, C Piskoti, A Zettl (1999)
Thermal conductivity of single-walled carbon nanotubesPhys. Rev. B, 59
M. Osman, D. Srivastava (2001)
Temperature dependence of the thermal conductivity of single-wall carbon nanotubesNanotechnology, 12
J. Robertson (2002)
Diamond-like amorphous carbonMaterials Science & Engineering R-reports, 37
(2006)
Effect of grain boundary scattering and nitrogen doping
Zhen Huang, T. Fisher, J. Murthy (2010)
Simulation of phonon transmission through graphene and graphene nanoribbons with a Green’s function methodJournal of Applied Physics, 108
M. Shamsa, Weili Liu, A. Balandin, C. Casiraghi, W. Milne, A. Ferrari (2006)
Thermal conductivity of diamond-like carbon filmsApplied Physics Letters, 89
Hengji Zhang, Geunsik Lee, A. Fonseca, Tammie Borders, Kyeongjae Cho (2010)
Isotope effect on the thermal conductivity of grapheneJournal of Nanomaterials, 2010
Stephen Choi, Z. Zhang, W. Yu, F. Lockwood, E. Grulke (2001)
Anomalous thermal conductivity enhancement in nanotube suspensionsApplied Physics Letters, 79
P. Kapit︠s︡a, D. Haar (1964)
Collected papers of P.L. Kapitza
V. Pereira, Antonio Neto (2008)
Strain engineering of graphene's electronic structure.Physical review letters, 103 4
C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. Nair, SUPARNA DUTTASINHA (2010)
Thermal conductivity of graphene in corbino membrane geometry.ACS nano, 4 4
M. Fujii, Xing Zhang, Huaqing Xie, H. Ago, Koji Takahashi, T. Ikuta, H. Abe, Tetsuo Shimizu (2005)
Measuring the thermal conductivity of a single carbon nanotube.Physical review letters, 95 6
T. Sayle, J. Goodfellow (1997)
Molecular dynamics study
A. Savin, Y. Kivshar, Bambi Hu (2010)
Suppression of thermal conductivity in graphene nanoribbons with rough edgesPhysical Review B, 82
Zhi‐Xin Guo, Dier Zhang, X. Gong (2009)
Thermal conductivity of graphene nanoribbonsApplied Physics Letters, 95
Kwanpyo Kim, W. Regan, Baisong Geng, B. Alemán, B. Kessler, Feng Wang, M. Crommie, A. Zettl (2010)
High‐temperature stability of suspended single‐layer graphenephysica status solidi (RRL) – Rapid Research Letters, 4
L. Braginsky, V. Shklover, H. Hofmann, P. Bowen (2004)
High-temperature thermal conductivity of porous Al2O3 nanostructuresPhysical Review B, 70
M. Lotya, P. King, U. Khan, S. De, J. Coleman (2010)
High-concentration, surfactant-stabilized graphene dispersions.ACS nano, 4 6
Keiji Saito, A. Dhar (2009)
Heat conduction in a three dimensional anharmonic crystal.Physical review letters, 104 4
R. Garth, V. Sailor (1949)
THERMAL CONDUCTIVITY OF GRAPHITE
A Yu, P Ramesh, ME Itkis, E Bekyarova, RC Haddon (2007)
Graphite nanoplatelet- epoxy composite thermal interface materialsJ. Phys. Chem. Lett., 111
Amelia Sparavigna, A. Inyushkin (2004)
On the isotope effect in thermal conductivity of siliconPhysica Status Solidi (c), 1
S. Kubakaddi, K. Bhargavi (2010)
Enhancement of phonon-drag thermopower in bilayer graphenePhysical Review B, 82
T Borca-Tasciuc (2001)
Thermal conductivity of InAs/AlSb superlatticesMicroscale Thermophys. Eng., 5
G. L. (1934)
Collected PapersNature, 134
H. Sevinçli, G. Cuniberti (2009)
Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbonsPhysical Review B, 81
A. Dhar (2001)
Heat conduction in the disordered harmonic chain revisited.Physical review letters, 86 26 Pt 1
MA Makeev, D Srivastava (2009)
Silicon carbide nanowires under external loads: An atomistic simulation studyAppl. Phys. Lett., 95
P. Schelling, P. Keblinski (2003)
Thermal expansion of carbon structuresPhysical Review B, 68
P. Klemens (2000)
Theory of the A-Plane Thermal Conductivity of GraphiteJournal of Wide Bandgap Materials, 7
M. Segal (2009)
Selling graphene by the ton.Nature nanotechnology, 4 10
P. Kim, L. Shi, A. Majumdar, P. McEuen (2001)
Thermal transport measurements of individual multiwalled nanotubes.Physical review letters, 87 21
E. Muñoz, Jianxin Lu, B. Yakobson (2010)
Ballistic thermal conductance of graphene ribbons.Nano letters, 10 5
Sungjin Park, R. Ruoff (2009)
Chemical methods for the production of graphenes.Nature nanotechnology, 4 4
Gregory, M., Odegård, Thomas, S. Gates, Lee, M. Nicholson, Kristopher, E. Wise (2001)
Equivalent-Continuum Modeling of Nano-Structured MaterialsComposites Science and Technology, 62
T. Travers (1998)
A Comprehensive ReviewNew Economy, 5
W. Bao, S. Liu, X. Lei, C. Wang (2009)
Nonlinear dc transport in grapheneJournal of Physics: Condensed Matter, 21
L. Jauregui, Y. Yue, A. Sidorov, Jiuning Hu, Qingkai Yu, G. Lopez, R. Jalilian, Daniel Benjamin, Derek Delkd, Wei Wu, Zhihong Liu, Xinwei Wang, Zhigang Jiang, X. Ruan, J. Bao, S. Pei, Yong Chen (2010)
Thermal Transport in Graphene Nanostructures: Experiments and Simulations, 28
C. Ho, R. Powell, P. Liley (1974)
Thermal Conductivity of the Elements: A Comprehensive Review
V. Goyal, S. Subrina, D. Nika, A. Balandin (2010)
Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperaturesApplied Physics Letters, 97
W. Capinski, H. Maris, E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Cardona, E. Gmelin (1997)
Thermal conductivity of isotopically enriched SiApplied Physics Letters, 71
Deepthi Konatham, K. Bui, D. Papavassiliou, Alberto Striolo (2011)
Simulation insights into thermally conductive graphene-based nanocompositesMolecular Physics, 109
S. Kitipornchai, Xiaoqiao He, K. Liew (2005)
Continuum model for the vibration of multilayered graphene sheetsPhysical Review B, 72
D. Nika, S. Ghosh, E. Pokatilov, A. Balandin (2009)
Lattice thermal conductivity of graphene flakes: Comparison with bulk graphiteApplied Physics Letters, 94
Subhasis Ghosh, D. Nika, E. Pokatilov, A. Balandin (2009)
Heat conduction in graphene: experimental study and theoretical interpretationNew Journal of Physics, 11
S. Sarma, E. Hwang, E. Rossi (2009)
Theory of carrier transport in bilayer graphenePhysical Review B, 81
(2000)
J. Stat. Phys
Dongshan Wei, Yang Song, Feng Wang (2011)
A simple molecular mechanics potential for μm scale graphene simulations from the adaptive force matching method.The Journal of chemical physics, 134 18
M. Reichling, T. Klotzbücher, J. Hartmann (1998)
Local variation of room-temperature thermal conductivity in high-quality polycrystalline diamondApplied Physics Letters, 73
Ziqian Wang, R. Xie, C. Bui, Dan Liu, Xiaoxi Ni, Baowen Li, J. Thong (2011)
Thermal transport in suspended and supported few-layer graphene.Nano letters, 11 1
S. Ghosh, I. Calizo, D. Teweldebrhan, E. Pokatilov, D. Nika, A. Balandin, W. Bao, F. Miao, C. Lau (2008)
PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
J. Hone, M. Whitney, A. Zettl (1998)
Thermal conductivity of single-walled carbon nanotubesSynthetic Metals, 103
(2010)
Handbook of Carbon, Graphite
A. Ferrari, J. Robertson (2001)
Origin of the 1 1 5 0 − cm − 1 Raman mode in nanocrystalline diamondPhysical Review B, 63
L. Rego, G. Kirczenow (1998)
Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approachPhysical Review B, 59
D. Cahill, R. Pohl (1989)
Heat flow and lattice vibrations in glassesSolid State Communications, 70
(1956)
Semiconductor Thermoelements and Thermal Cooling (Nauka
M. Makeev, D. Srivastava (2009)
Thermal properties of char obtained by pyrolysis: A molecular dynamics simulation studyApplied Physics Letters, 95
(2009)
IEEE Electr. Device Lett
S Ghosh (2008)
Extremely high thermal conductivity in graphene: Prospects for thermal management application in nanoelectronic circuitsAppl. Phys. Lett., 92
W. Zhong, Mao-ping Zhang, B. Ai, Dong-qin Zheng (2011)
Chirality- and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics studyApplied Physics Letters, 98
Deqi Wang, Jing Shi (2011)
Effect of charged impurities on the thermoelectric power of graphene near the Dirac pointPhysical Review B, 83
P. Klemens (2001)
Theory of Thermal Conduction in Thin Ceramic FilmsInternational Journal of Thermophysics, 22
E. Hwang, E. Rossi, S. Sarma (2009)
Theory of thermopower in two-dimensional graphenePhysical Review B, 80
F. Moss, P. McClintock (2009)
Experiments and simulations
(2009)
Better computing through CPU cooling
K. Michel, B. Verberck (2008)
Theory of the evolution of phonon spectra and elastic constants from graphene to graphitePhysical Review B, 78
D Konatham, A Striolo (2011)
Thermal boundary resistance at the graphene-oil interfaceMol. Phys., 109
M. Makeev, D. Srivastava, M. Menon (2006)
Silicon carbide nanowires under external loads: An atomistic simulation studyPhysical Review B, 74
Wei Yu, Huaqing Xie, Wei Chen (2010)
Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheetsJournal of Applied Physics, 107
Zhen Chen, W. Jang, W. Bao, C. Lau, C. Dames (2009)
Thermal contact resistance between graphene and silicon dioxideApplied Physics Letters, 95
Weiwei Cai, A. Moore, Yanwu Zhu, Xuesong Li, Shanshan Chen, Li Shi, R. Ruoff (2010)
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition.Nano letters, 10 5
J. Seol, I. Jo, A. Moore, L. Lindsay, Z. Aitken, M. Pettes, Xuesong Li, Z. Yao, Rui Huang, D. Broido, N. Mingo, R. Ruoff, Li Shi (2010)
Two-Dimensional Phonon Transport in Supported GrapheneScience, 328
I. Calizo, A. Balandin, W. Bao, F. Miao, C. Lau (2007)
Temperature dependence of the Raman spectra of graphene and graphene multilayers.Nano letters, 7 9
K. Novoselov, SUPARNA DUTTASINHA, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov (2004)
Electric Field Effect in Atomically Thin Carbon FilmsScience, 306
D. Nika, E. Pokatilov, A. Askerov, A. Balandin (2009)
Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scatteringPhysical Review B, 79
Lei Yang (2001)
Finite heat conduction in a 2D disorder lattice.Physical review letters, 88 9
Jin-Wu Jiang, Jian-Sheng Wang, Baowen Li (2009)
Thermal conductance of graphene and dimeritePhysical Review B, 79
Yuri Zuev, W. Chang, P. Kim (2008)
Thermoelectric and magnetothermoelectric transport measurements of graphene.Physical review letters, 102 9
O. Auciello, A. Sumant (2010)
Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devicesDiamond and Related Materials, 19
(2009)
Comparison and bulk graphite
E. Pop, D. Mann, Qian Wang, K. Goodson, H. Dai (2005)
Thermal conductance of an individual single-wall carbon nanotube above room temperature.Nano letters, 6 1
S. Lepri, R. Livi, A. Politi (2001)
Thermal conduction in classical low-dimensional latticesPhysics Reports, 377
K. Kim, Yue Zhao, Houk Jang, Sang Lee, J. Kim, Kwang Kim, Jong-Hyun Ahn, P. Kim, Jae-Young Choi, B. Hong (2009)
Large-scale pattern growth of graphene films for stretchable transparent electrodesNature, 457
HO Pierson (2010)
Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications
C. Morath, H. Maris, J. Cuomo, D. Pappas, A. Grill, V. Patel, J. Doyle, K. Saenger (1994)
Picosecond optical studies of amorphous diamond and diamondlike carbon: Thermal conductivity and longitudinal sound velocityJournal of Applied Physics, 76
Florence Nelson, V. Kamineni, Tao Zhang, E. Comfort, J. Lee, A. Diebold (2010)
Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometryApplied Physics Letters, 97
W. Jang, Zhen Chen, W. Bao, C. Lau, C. Dames (2010)
Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite.Nano letters, 10 10
Y. Hernández, M. Lotya, V. Nicolosi, F. Blighe, S. De, G. Duesberg, J. Coleman (2008)
Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutionsarXiv: Materials Science
Shanshan Chen, A. Moore, Weiwei Cai, J. Suk, J. An, C. Mishra, Charles Amos, Carl Magnuson, Junyong Kang, Li Shi, R. Ruoff (2011)
Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments.ACS nano, 5 1
(2008)
3 MethodSilencing the Demon’s Advocate
N. Mounet, N. Marzari (2004)
First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivativesPhysical Review B, 71
Jae-Ung Lee, D. Yoon, Hakseong Kim, Sang Lee, H. Cheong (2011)
Thermal conductivity of suspended pristine graphene measured by Raman spectroscopyPhysical Review B, 83
D. Cahill (1990)
Thermal conductivity measurement from 30 to 750 K: the 3ω methodReview of Scientific Instruments, 61
Y. Koh, M. Bae, D. Cahill, E. Pop (2010)
Heat conduction across monolayer and few-layer graphenes.Nano letters, 10 11
K. Mak, J. Shan, T. Heinz (2010)
Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons.Physical review letters, 106 4
C. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl (2007)
Breakdown of Fourier's law in nanotube thermal conductors.Physical review letters, 101 7
AF Ioffe (1956)
Semiconductor Thermoelements and Thermal Cooling
L. Lindsay, D. Broido, N. Mingo (2010)
Flexural phonons and thermal transport in graphenePhysical Review B, 82
Dhruv Singh, J. Murthy, T. Fisher (2011)
Mechanism of thermal conductivity reduction in few-layer grapheneJournal of Applied Physics, 110
J. Hartmann, P. Voigt, M. Reichling (1997)
Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscopeJournal of Applied Physics, 81
N. Zamponi (2011)
transport in graphene
D. Donadio, G. Galli (2007)
Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation.Physical review letters, 99 25
I. Hsu, Rajay Kumar, Adam Bushmaker, S. Cronin, M. Pettes, Li Shi, T. Brintlinger, M. Fuhrer, J. Cumings (2008)
Optical measurement of thermal transport in suspended carbon nanotubesApplied Physics Letters, 92
D. Teweldebrhan, A. Balandin (2008)
Modification of graphene properties due to electron-beam irradiationApplied Physics Letters, 94
George Chen, P. Hui, Shi Xu (2000)
Thermal conduction in metalized tetrahedral amorphous carbon (ta C) films on siliconThin Solid Films, 366
J. Butler, A. Sumant (2008)
The CVD of Nanodiamond MaterialsChemical Vapor Deposition, 14
J. Checkelsky, N. Ong (2008)
Thermopower and Nernst effect in graphene in a magnetic fieldPhysical Review B, 80
D. Cahill (2002)
Erratum: “Thermal conductivity measurement from 30 to 750 K: The 3ω method” [Rev. Sci. Instrum. 61, 802 (1990)]Review of Scientific Instruments, 73
Shiren Wang, Madhava Tambraparni, Jingjing Qiu, J. Tipton, D. Dean (2009)
Thermal Expansion of Graphene CompositesMacromolecules, 42
P. Wei, W. Bao, Y. Pu, C. Lau, Jing Shi (2008)
Anomalous thermoelectric transport of Dirac particles in graphene.Physical review letters, 102 16
Andrew Bullen, K. O'hara, D. Cahill, O. Monteiro, A. Keudell (2000)
Thermal conductivity of amorphous carbon thin filmsJournal of Applied Physics, 88
Xiangfan Xu, Yu Wang, Kaiwen Zhang, Xiang-Fu Zhao, S. Bae, M. Heinrich, C. Bui, R. Xie, J. Thong, B. Hong, K. Loh, Baowen Li, B. Oezyilmaz (2010)
Phonon Transport in Suspended Single Layer GraphenearXiv: Mesoscale and Nanoscale Physics
A. Yu, M. Itkis, E. Bekyarova, R. Haddon (2006)
Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based compositesApplied Physics Letters, 89
S. Berber, Young-Kyun Kwon, D. Tománek (2000)
Unusually high thermal conductivity of carbon nanotubesPhysical review letters, 84 20
W. Evans, Lin Hu, P. Keblinski (2010)
Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen terminationApplied Physics Letters, 96
A. Woodcraft, M. Barucci, P. Hastings, L. Lolli, V. Martelli, L. Risegari, G. Ventura (2009)
Thermal conductivity measurements of pitch-bonded graphites at millikelvin temperatures: Finding a replacement for AGOT graphiteCryogenics, 49
Suchismita Ghosh, W. Bao, D. Nika, S. Subrina, E. Pokatilov, C. Lau, A. Balandin (2010)
Dimensional crossover of thermal transport in few-layer graphene.Nature materials, 9 7
B. Persson, H. Ueba (2010)
Heat transfer between weakly coupled systems: Graphene on a-SiO2EPL (Europhysics Letters), 91
A. Balandin, Kang Wang (1998)
Effect of phonon confinement on the thermoelectric figure of merit of quantum wellsJournal of Applied Physics, 84
D. Gruen, Shengzhong Liu, A. Krauss, X. Pan (1994)
Buckyball microwave plasmas: Fragmentation and diamond‐film growthJournal of Applied Physics, 75
PG Klemens (1958)
Solid State Physics
M. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, O. Auciello, J. Carlisle, J. Eastman, P. Keblinski, P. Schelling, S. Phillpot (2006)
Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin filmsJournal of Applied Physics, 99
A. Schmidt, K. Collins, A. Minnich, Gang Chen (2010)
Thermal conductance and phonon transmissivity of metal–graphite interfacesJournal of Applied Physics, 107
W. Hurler, M. Pietralla, A. Hammerschmidt (1995)
Determination of thermal properties of hydrogenated amorphous carbon films via mirage effect measurementsDiamond and Related Materials, 4
A. Yu, P. Ramesh, M. Itkis, and Bekyarova, R. Haddon (2007)
Graphite Nanoplatelet−Epoxy Composite Thermal Interface MaterialsJournal of Physical Chemistry C, 111
GM Odegard, TS Gates, LM Nicholson, KE Wise (2002)
Continuum model for the vibration of multilayered graphene sheetsCompos. Sci. Technol., 62
M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, A. Balandin (2008)
Thermal conductivity of nitrogenated ultrananocrystalline diamond films on siliconJournal of Applied Physics, 103
Zhong Yan, Guanxiong Liu, J. Khan, Jie Yu, S. Subrina, A. Balandin (2011)
Experimental Demonstration of Thermal Management of High-Power GaN Transistors with Graphene Lateral Heat SpreadersMRS Proceedings, 1344
Yuanbo Zhang, Yan-Wen Tan, H. Stormer, P. Kim (2005)
Experimental observation of the quantum Hall effect and Berry's phase in grapheneNature, 438
J. Drabble, H. Goldsmid (1961)
Thermal conduction in semiconductors
C. Chang, A. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, Deyu Li, A. Majumdar, A. Zettl (2006)
Isotope effect on the thermal conductivity of boron nitride nanotubes.Physical review letters, 97 8
Deepthi Konatham, A. Striolo (2009)
Thermal boundary resistance at the graphene-oil interfaceApplied Physics Letters, 95
Yonggang Huang, Jian Wu, K. Hwang (2006)
Thickness of graphene and single-wall carbon nanotubesPhysical Review B, 74
M. Pettes, Li Shi (2009)
Thermal and Structural Characterizations of Individual Single‐, Double‐, and Multi‐Walled Carbon NanotubesAdvanced Functional Materials, 19
Jiuning Hu, Stephen Schiffli, A. Vallabhaneni, X. Ruan, Yong Chen (2010)
Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics studyApplied Physics Letters, 97
A. Balandin, Suchismita Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. Lau (2008)
Superior thermal conductivity of single-layer graphene.Nano letters, 8 3
L. Veca, M. Meziani, Wei Wang, Xin Wang, Fushen Lu, Puyu Zhang, Yi Lin, R. Fee, J. Connell, Ya‐Ping Sun (2009)
Carbon Nanosheets for Polymeric Nanocomposites with High Thermal ConductivityAdvanced Materials, 21
CH Yu, L Shi, Z Yao, DY Li, A Majumdar (2005)
Thermal conductance and thermopower of an single-wall carbon nanotubesNano Lett., 5
A. Balandin, M. Shamsa, Weili Liu, C. Casiraghi, A. Ferrari (2008)
Thermal conductivity of ultrathin tetrahedral amorphous carbon filmsApplied Physics Letters, 93
Z. Zhang, S. Fan, Jinlin Huang, Charles Lieber (1996)
Diamondlike properties in a single phase carbon nitride solidApplied Physics Letters, 68
L. Lindsay, L. Lindsay, D. Broido, N. Mingo (2010)
Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limitPhysical Review B, 82
(2010)
Status review of the science and technology of devices
A. Ward, D. Broido, D. Stewart, G. Deinzer (2009)
Ab initio theory of the lattice thermal conductivity in diamondPhysical Review B, 80
Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range — of over five orders of magnitude — from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.
Nature Materials – Springer Journals
Published: Jul 22, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.