Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones.

Recombinant albumin and transthyretin transport proteins from two gull species and human:... Environmentally relevant concentrations of selected polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) flame retardant congeners and their hydroxylated (OH) and methoxylated (MeO) analogues that can perturb thyroid hormone-dependent processes were comparatively examined with respect to competitive binding with thyroxine (T(4)) and 3,5,3'-triiodothyronine (T(3)) thyroid hormones (THs) on recombinant human and gull albumin and transthyretin transport proteins. The liver tissue was from glaucous gulls (Larus hyperboreus) from Norway and herring gulls (Larus argentatus) from the Great Lakes of North America. We isolated, cloned, sequenced, purified, and expressed the cDNA (cDNA) of albumin from liver of herring and glaucous gull. Albumin amino acid sequences were identical for both gull species. Concentration-dependent, competitive binding curves were generated for T(4) and T(3) binding alone and for selected substrates using gull and human recombinant albumin (recALB). Human recALB had high preference for T(4) relative to T(3), whereas it was reversed for gull recALB. Binding assays with recALB and recTTR gull proteins showed that relative to 2,2',4,4'-tetrabromoDE (BDE-47) and 2,2',3,4',5,5',6-heptaCB (CB-187) and the MeO-substituted (4-MeO-CB187 and 6-MeO-BDE47) analogues, 4-OH-CB187, 6-OH-BDE47, and 4'-OH-BDE49 had the greatest binding affinity and potency, and that competitive binding was greater for T(3) relative to T(4). These results indicate that xenobiotic ligand binding to human ALB or TTR cannot be used as a surrogate for gull binding interactions. The combination of TH-like brominated diphenyl ether backbone (relative to the chlorinated biphenyl backbone), and the presence of OH-group produced a more effective competitive ligand on human and gull recALB and recTTR relative to both T(3) and T(4). This suggests the possibility that OH-substituted organohalogen contaminants may be an exposure concern to the thyroid system in free-ranging gulls as well as for humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science & Technology Pubmed

Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones.

Environmental Science & Technology , Volume 44 (1): 8 – Mar 25, 2010

Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones.


Abstract

Environmentally relevant concentrations of selected polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) flame retardant congeners and their hydroxylated (OH) and methoxylated (MeO) analogues that can perturb thyroid hormone-dependent processes were comparatively examined with respect to competitive binding with thyroxine (T(4)) and 3,5,3'-triiodothyronine (T(3)) thyroid hormones (THs) on recombinant human and gull albumin and transthyretin transport proteins. The liver tissue was from glaucous gulls (Larus hyperboreus) from Norway and herring gulls (Larus argentatus) from the Great Lakes of North America. We isolated, cloned, sequenced, purified, and expressed the cDNA (cDNA) of albumin from liver of herring and glaucous gull. Albumin amino acid sequences were identical for both gull species. Concentration-dependent, competitive binding curves were generated for T(4) and T(3) binding alone and for selected substrates using gull and human recombinant albumin (recALB). Human recALB had high preference for T(4) relative to T(3), whereas it was reversed for gull recALB. Binding assays with recALB and recTTR gull proteins showed that relative to 2,2',4,4'-tetrabromoDE (BDE-47) and 2,2',3,4',5,5',6-heptaCB (CB-187) and the MeO-substituted (4-MeO-CB187 and 6-MeO-BDE47) analogues, 4-OH-CB187, 6-OH-BDE47, and 4'-OH-BDE49 had the greatest binding affinity and potency, and that competitive binding was greater for T(3) relative to T(4). These results indicate that xenobiotic ligand binding to human ALB or TTR cannot be used as a surrogate for gull binding interactions. The combination of TH-like brominated diphenyl ether backbone (relative to the chlorinated biphenyl backbone), and the presence of OH-group produced a more effective competitive ligand on human and gull recALB and recTTR relative to both T(3) and T(4). This suggests the possibility that OH-substituted organohalogen contaminants may be an exposure concern to the thyroid system in free-ranging gulls as well as for humans.

Loading next page...
 
/lp/pubmed/recombinant-albumin-and-transthyretin-transport-proteins-from-two-gull-A0El0c7Tf0

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0013-936X
DOI
10.1021/es902691u
pmid
20039755

Abstract

Environmentally relevant concentrations of selected polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) flame retardant congeners and their hydroxylated (OH) and methoxylated (MeO) analogues that can perturb thyroid hormone-dependent processes were comparatively examined with respect to competitive binding with thyroxine (T(4)) and 3,5,3'-triiodothyronine (T(3)) thyroid hormones (THs) on recombinant human and gull albumin and transthyretin transport proteins. The liver tissue was from glaucous gulls (Larus hyperboreus) from Norway and herring gulls (Larus argentatus) from the Great Lakes of North America. We isolated, cloned, sequenced, purified, and expressed the cDNA (cDNA) of albumin from liver of herring and glaucous gull. Albumin amino acid sequences were identical for both gull species. Concentration-dependent, competitive binding curves were generated for T(4) and T(3) binding alone and for selected substrates using gull and human recombinant albumin (recALB). Human recALB had high preference for T(4) relative to T(3), whereas it was reversed for gull recALB. Binding assays with recALB and recTTR gull proteins showed that relative to 2,2',4,4'-tetrabromoDE (BDE-47) and 2,2',3,4',5,5',6-heptaCB (CB-187) and the MeO-substituted (4-MeO-CB187 and 6-MeO-BDE47) analogues, 4-OH-CB187, 6-OH-BDE47, and 4'-OH-BDE49 had the greatest binding affinity and potency, and that competitive binding was greater for T(3) relative to T(4). These results indicate that xenobiotic ligand binding to human ALB or TTR cannot be used as a surrogate for gull binding interactions. The combination of TH-like brominated diphenyl ether backbone (relative to the chlorinated biphenyl backbone), and the presence of OH-group produced a more effective competitive ligand on human and gull recALB and recTTR relative to both T(3) and T(4). This suggests the possibility that OH-substituted organohalogen contaminants may be an exposure concern to the thyroid system in free-ranging gulls as well as for humans.

Journal

Environmental Science & TechnologyPubmed

Published: Mar 25, 2010

There are no references for this article.