Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. King, M. Kohn, J. Eiler (2003)
Constraints on the petrologic structure of the subduction zone slab-mantle interface from Franciscan Complex exotic ultramafic blocksGeological Society of America Bulletin, 115
S. Arai (1975)
Contact metamorphosed dunite-harzburgite complex in the Chugoku district, western JapanContributions to Mineralogy and Petrology, 52
M. Mellini, V. Trommsdorff, R. Compagnoni (1987)
Antigorite polysomatism: behaviour during progressive metamorphismContributions to Mineralogy and Petrology, 97
T. Holland, R. Powell (1998)
An internally consistent thermodynamic data set for phases of petrological interestJournal of Metamorphic Geology, 16
T. Nozaka, T. Shibata (1995)
Mineral paragenesis in thermally metamorphosed serpentinites, Ohsa-yama, Okayama Prefecture, 2
V. Trommsdorff, B. Evans (1972)
Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy)American Journal of Science, 272
W. Bach, C. Garrido, H. Paulick, J. Harvey, M. Rosner (2003)
Seawater‐peridotite interactions: First insights from ODP Leg 209, MAR 15°NGeochemistry, 5
Y. Lagabrielle, J. Bodinier (2008)
Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French PyreneesTerra Nova, 20
D. Ellis, D. Green (1979)
An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibriaContributions to Mineralogy and Petrology, 71
J. Hermann, O. Müntener, M. Scambelluri (2000)
The importance of serpentinite mylonites for subduction and exhumation of oceanic crustTectonophysics, 327
M. Scambelluri, O. Müntener, L. Ottolini, T. Pettke, R. Vannucci (2004)
The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluidsEarth and Planetary Science Letters, 222
B. Evans (1977)
Metamorphism of Alpine Peridotite and SerpentiniteAnnual Review of Earth and Planetary Sciences, 5
V López Sánchez-Vizcaíno, V Trommsdorff, MT Gómez-Pugnaire, CJ Garrido, O Müntener, JAD Connolly (2005)
Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, SSpain). Contrib Mineral Petrol, 149
J. Vance, M. Dungan (1977)
Formation of peridotites by deserpentinization in the Darrington and Sultan areas, Cascade Mountains, WashingtonGeological Society of America Bulletin, 88
R. Torres-Roldán, A. Garcia‐Casco, P. García-Sánchez (2000)
CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platformsComputers & Geosciences, 26
E. Watson, D. Wark, J. Price, J. Orman (2002)
Mapping the thermal structure of solid-media pressure assembliesContributions to Mineralogy and Petrology, 142
V. Sánchez‐Vizcaíno, M. Gomez-Pugnaire, C. Garrido, J. Padrón-navarta, M. Mellini (2009)
Breakdown mechanisms of titanclinohumite in antigorite serpentinite (Cerro del Almirez massif, S. Spain): A petrological and TEM studyLithos, 107
V. Sánchez‐Vizcaíno, D. Rubatto, M. Gomez-Pugnaire, V. Trommsdorff, O. Müntener (2001)
Middle Miocene high‐pressure metamorphism and fast exhumation of the Nevado‐Filábride Complex, SE SpainTerra Nova, 13
E. Puga, J. Nieto, A. Federico, J. Bodinier, L. Morten (1999)
Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association Mulhacen ´ / Complex, SE Spain : evidence of eo-Alpine subduction following an ocean-floor metasomatic processLithos, 49
C. Manning (2004)
The chemistry of subduction-zone fluidsEarth and Planetary Science Letters, 223
R. Springer (1974)
Contact Metamorphosed Ultramafic Rocks in the Western Sierra Nevada Foothills, CaliforniaJournal of Petrology, 15
F. Schilling, B. Wunder (2004)
Temperature distribution in piston-cylinder assemblies: Numerical simulations and laboratory experimentsEuropean Journal of Mineralogy, 16
E. Puga, A. Federico, E. Fediuková, M. Bondi, L. Morten (1989)
Petrology, geochemistry and metamorphic evolution of the ophiolitic eclogites and related rocks from the Sierra Nevada (Betic Cordilleras, Southeastern Spain)Schweizerische Mineralogische Und Petrographische Mitteilungen, 69
B. Wunder, R. Wirth, M. Gottschalk (2001)
Antigorite Pressure and temperature dependence of polysomatism and water contentEuropean Journal of Mineralogy, 13
S. Sorensen, J. Grossman (1989)
Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern CaliforniaGeochimica et Cosmochimica Acta, 53
G. Capitani, M. Mellini (2004)
The modulated crystal structure of antigorite: The m = 17 polysomeAmerican Mineralogist, 89
S. Peacock, R. Hyndman (1999)
Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakesGeophysical Research Letters, 26
A. Pawley (1998)
The reaction talc plus forsterite = enstatite plus H2O: New experimental results and petrological implicationAmerican Mineralogist, 83
J. Lier, P. Bruyn, J. Overbeek (1960)
THE SOLUBILITY OF QUARTZThe Journal of Physical Chemistry, 64
M. Scambelluri, O. Müntener, J. Hermann, G. Piccardo, V. Trommsdorff (1995)
Subduction of water into the mantle: History of an Alpine peridotiteGeology, 23
M. Schmidt, S. Poli (1998)
Experimentally based water budgets for dehydrating slabs and consequences for arc magma generationEarth and Planetary Science Letters, 163
V. Sánchez‐Vizcaíno, V. Trommsdorff, M. Gomez-Pugnaire, C. Garrido, O. Müntener, J. Connolly (2005)
Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain)Contributions to Mineralogy and Petrology, 149
D O’Hanley (1996)
Serpentinites: records of petrologic and tectonic history
R. King, G. Bebout (2006)
Metamorphic evolution along the slab/mantle interface within subduction zonesGeochimica et Cosmochimica Acta, 70
M. Gomez-Pugnaire, G. Franz, V. Sánchez‐Vizcaíno (1994)
Retrograde formation of NaCl-scapolite in high pressure metaevaporites from the Cordilleras Béticas (Spain)Contributions to Mineralogy and Petrology, 116
J. Snow, H. Dick (1995)
Pervasive magnesium loss by marine weathering of peridotiteGeochimica et Cosmochimica Acta, 59
K. Bose, A. Navrotsky (1998)
Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O: Implications for volatile transport to the mantleJournal of Geophysical Research, 103
Jennifer Pickering, Brandon Schwab, A. Johnston (1998)
Off-center hot spots: Double thermocouple determination of the thermal gradient in a 1.27 cm (1/2 in.) CaF2 piston-cylinder furnace assemblyAmerican Mineralogist, 83
C. Marchesi, C. Garrido, M. Godard, J. Proenza, F. Gervilla, J. Blanco-Moreno (2006)
Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba)Contributions to Mineralogy and Petrology, 151
V Trommsdorff, BW Evans (1974)
Alpine metamorphism of peridotitic rocksSchweiz Mineral Petrogr Mitt, 72
L. Rüpke, J. Morgan, M. Hort, J. Connolly (2004)
Serpentine and the subduction zone water cycleEarth and Planetary Science Letters, 223
B. Evans (2008)
Control of the Products of Serpentinization by the Fe2+Mg –1 Exchange Potential of Olivine and OrthopyroxeneJournal of Petrology, 49
C. Spandler, J. Hermann, K. Faure, J. Mavrogenes, R. Arculus (2008)
The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New CaledoniaContributions to Mineralogy and Petrology, 155
BW Evans, W Johannes, H Oterdoom, V Trommsdorff (1976)
Stability of crysotile and serpentinite in the serpentine multisystemSchweiz Mineral Petrogr Mitt, 56
P. Ulmer, V. Trommsdorff (1995)
Serpentine Stability to Mantle Depths and Subduction-Related MagmatismScience, 268
M. Scambelluri, N. Malaspina, J. Hermann (2007)
Subduction fluids and their interaction with the mantle wedge: a perspective from the study of high-pressure ultramafic rocksPeriodico Di Mineralogia, 76
B. Mysen, P. Ulmer, J. Konzett, M. Schmidt (1998)
Chapter 3. THE UPPER MANTLE NEAR CONVERGENT PLATE BOUNDARIES
B. Mysen, P. Ulmer, J. Konzett, M. Schmidt (1998)
The upper mantle near convergent plate boundariesReviews in Mineralogy & Geochemistry, 37
D. Jenkins (1981)
Experimental phase relations of hydrous peridotites modelled in the system H2O-CaO-MgO-Al2O3,-SiO2Contributions to Mineralogy and Petrology, 77
R. Worden, G. Droop, P. Champness (1991)
The reaction antigorite → olivine + talc + H2O in the Bergell aureole, N. ItalyMineralogical Magazine, 55
G. Bromiley, A. Pawley (2003)
The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stabilityAmerican Mineralogist, 88
P. Fumagalli, S. Poli (2004)
Experimentally Determined Phase Relations in Hydrous Peridotites to 6·5 GPa and their Consequences on the Dynamics of Subduction ZonesJournal of Petrology, 46
S. Sorensen, J. Grossman (1993)
Accessory minerals and subduction zone metasomatism: a geochemical comparison of two mélanges (Washington and California, U.S.A.)Chemical Geology, 110
A. Irving, P. Ashley (1976)
Amphibole‐olivine‐spinel, cordierite‐anthophyllite and related hornfelses associated with metamorphosed serpentinites in the goobarragandra district, near Tumut, New South Wales, 23
S. Guillot, K. Hattori, J. Sigoyer (2000)
Mantle wedge serpentinization and exhumation of eclogites: Insights from eastern Ladakh, northwest HimalayaGeology, 28
N. Hilairet, I. Daniel, B. Reynard (2006)
Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zonesGeophysical Research Letters, 33
H. Iwamori, Dapeng Zhao (2000)
Melting and seismic structure beneath the Northeast Japan ArcGeophysical Research Letters, 27
C. Ranero, J. Morgan, K. Mcintosh, C. Reichert (2003)
Bending-related faulting and mantle serpentinization at the Middle America trenchNature, 425
M. Scambelluri, Piero Bottazzi, Volkmar Trommsdor, R. Vannucci, J. Hermann, Maria Mez-Pugnaire, Vicente ©no (2001)
Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantleEarth and Planetary Science Letters, 192
J. Chernosky, H. Day, L. Caruso (1985)
Equilibria in the system MgO-SiO 2 -H 2 O; experimental determination of the stability of Mg-anthophylliteAmerican Mineralogist, 70
Y. Tatsumi (1989)
Migration of fluid phases and genesis of basalt magmas in subduction zonesJournal of Geophysical Research, 94
E. Puga, A. Federico, J. Nieto (2002)
Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: a reviewGeodinamica Acta, 15
C. Manning (1995)
Phase-Equilibrium Controls on SiO2Metasomatism by Aqueous Fluid in Subduction Zones: Reaction at Constant Pressure and TemperatureInternational Geology Review, 37
S. Uehara, K. Kamata (1994)
Antigorite with a large supercell from Saganoseki, Oita Prefecture, JapanCanadian Mineralogist, 32
G. Clarke, J. Aitchison, Dominique Cluzel (1997)
Eclogites and Blueschists of the Pam Peninsula, NE New Caledonia: a ReappraisalJournal of Petrology, 38
S. Peacock (2001)
Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantleGeology, 29
N. Hilairet, I. Daniel, B. Reynard (2006)
P–V Equations of State and the relative stabilities of serpentine varietiesPhysics and Chemistry of Minerals, 33
R. Pinsent, D. Hirst (1977)
The Metamorphism of the Blue River Ultramafic Body, Cassiar, British Columbia, CanadaJournal of Petrology, 18
E. Melekhova, M. Schmidt, P. Ulmer, Elisabeth Guggenbühl (2006)
The reaction talc + forsterite = enstatite + H2O revisited: Application of conventional and novel experimental techniques and derivation of revised thermodynamic propertiesAmerican Mineralogist, 91
V. Trommsdorff, V. Sánchez‐Vizcaíno, M. Gomez-Pugnaire, O. Müntener (1998)
High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE SpainContributions to Mineralogy and Petrology, 132
S. Guillot, K. Hattori, J. Sigoyer, T. Nägler, A. Auzende (2001)
Evidence of hydration of the mantle wedge and its role in the exhumation of eclogitesEarth and Planetary Science Letters, 193
B. Wunder, W. Schreyer (1997)
Antigorite: High-pressure stability in the system MgOSiO2H2O (MSH)Lithos, 41
A. Auzende, B. Devouard, S. Guillot, I. Daniel, A. Baronnet, J. Lardeaux (2002)
Serpentinites from Central Cuba: petrology and HRTEM studyEuropean Journal of Mineralogy, 14
J. Perrillat, I. Daniel, K. Koga, B. Reynard, H. Cardon, W. Crichton (2005)
Kinetics of antigorite dehydration: A real-time X-ray diffraction studyEarth and Planetary Science Letters, 236
B. Frost (1975)
Contact Metamorphism of Serpentinite, Chloritic Blackwall and Rodingite at Paddy-Go-Easy Pass, Central Cascades, WashingtonJournal of Petrology, 16
J. Padrón-navarta, V. Sánchez‐Vizcaíno, C. Garrido, M. Gomez-Pugnaire, A. Jabaloy, G. Capitani, M. Mellini (2008)
Highly ordered antigorite from Cerro del Almirez HP–HT serpentinites, SE SpainContributions to Mineralogy and Petrology, 156
G. Boillot, G. Féraud, M. Recq, J. Girardeau (1989)
Undercrusting by serpentinite beneath rifted marginsNature, 341
H. Paulick, W. Bach, M. Godard, J. Hoog, G. Suhr, J. Harvey (2006)
Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environmentsChemical Geology, 234
J. Connolly (2005)
Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonationEarth and Planetary Science Letters, 236
A. Auzende, S. Guillot, B. Devouard, A. Baronnet (2006)
Serpentinites in an Alpine convergent setting: Effects of metamorphic grade and deformation on microstructuresEuropean Journal of Mineralogy, 18
P Ulmer, V Trommsdorff (1999)
Mantle petrology: field observations and high pressure experimentation. Special Publication No. 6
G. Bebout, M. Barton (2002)
Tectonic and metasomatic mixing in a high-T, subduction-zone mélange—insights into the geochemical evolution of the slab–mantle interfaceChemical Geology, 187
C. Spandler, J. Hermann, R. Arculus, John Mavrogenes (2003)
Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processesContributions to Mineralogy and Petrology, 146
T. Komabayashi, K. Hirose, K. Funakoshi, N. Takafuji (2005)
Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observationsPhysics of the Earth and Planetary Interiors, 151
W. Bach, H. Paulick, C. Garrido, B. Ildefonse, W. Meurer, S. Humphris (2006)
Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274)Geophysical Research Letters, 33
C. Garrido, V. Sánchez‐Vizcaíno, M. Gomez-Pugnaire, V. Trommsdorff, O. Alard, J. Bodinier, M. Godard (2005)
Enrichment of HFSE in chlorite‐harzburgite produced by high‐pressure dehydration of antigorite‐serpentinite: Implications for subduction magmatismGeochemistry, 6
M. Scambelluri, J. Fiebig, N. Malaspina, O. Müntener, T. Pettke (2004)
Serpentinite Subduction: Implications for Fluid Processes and Trace-Element RecyclingInternational Geology Review, 46
M. Gomez-Pugnaire, J. Fernández-Soler (1987)
High-pressure metamorphism in metabasites from the Betic Cordilleras (S.E. Spain) and its evolution during the Alpine orogenyContributions to Mineralogy and Petrology, 95
N. Bowen, O. Tuttle (1949)
THE SYSTEM MgO—SiO2—H2OGeological Society of America Bulletin, 60
R. Hemley (1998)
Ultrahigh-pressure mineralogy : Physics and chemistry of the earth's deep interior
C. Manning (1994)
The solubility of quartz in H2O in the lower crust and upper mantleGeochimica et Cosmochimica Acta, 58
G. Bebout, M. Barton (1989)
Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, CaliforniaGeology, 17
W Johannes (1975)
Zur synthese and thermischen stabilität von antigoriteFortschr Mineral, 53
H. Kawakatsu, S. Watada (2007)
Seismic Evidence for Deep-Water Transportation in the MantleScience, 316
J. Hermann, C. Spandler (2008)
Sediment Melts at Sub-arc Depths: an Experimental StudyJournal of Petrology, 49
J. Alt, W. Shanks, W. Bach, H. Paulick, C. Garrido, G. Beaudoin (2007)
Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid‐Atlantic Ridge, 15°20′N (ODP Leg 209): A sulfur and oxygen isotope studyGeochemistry, 8
A. Pawley (1998)
The reaction talc+forsterite=enstatite+H2O; new experimental results and petrological implicationsAmerican Mineralogist, 83
D. Moore, D. Lockner (2007)
Comparative Deformation Behavior of Minerals in Serpentinized Ultramafic Rock: Application to the Slab-Mantle Interface in Subduction ZonesInternational Geology Review, 49
S Matthes, E Knauer (1981)
The phase petrology of the contact metamorphic serpentinite nera Erbendorf, Oberpfalz, BavariaNeues Jahrb Geol Palaontol Abh, 141
J. CrunNosxv (1985)
Equilibria in the system MgO-SiO2-H2O: experimental determination of the stability of Mg-anthophyllite
E. Tenthorey, J. Hermann (2004)
Composition of fluids during serpentinite breakdown in subduction zones: Evidence for limited boron mobilityGeology, 32
Piston cylinder experiments were performed to constrain the pressure and temperature conditions for two high-pressure antigorite dehydration reactions found in silica-enriched serpentinites from Cerro del Almirez (Nevado–Filábride Complex, Betic Cordillera, southern Spain). At 630–660°C and pressures greater than 1.6 GPa, antigorite first reacts with talc to form orthopyroxene ± chlorite + fluid. We show that orthopyroxene + antigorite is restricted to high-pressure metamorphism of silica-enriched serpentinite. This uncommon assemblage is helpful in constraining metamorphic conditions in cold subduction environments, where antigorite serpentinites have no diagnostic assemblages over a large pressure and temperature range. The second dehydration reaction leads to the breakdown of antigorite to olivine + orthopyroxene + chlorite + fluid. The maximum stability of antigorite is found at 680°C at 1.9 GPa, which also corresponds to the maximum pressure limit for tremolite coexisting with olivine + orthopyroxene. The high aluminium (3.70 wt% Al2O3) and chromium contents (0.59 wt% Cr2O3) of antigorite in the investigated starting material is responsible for the expansion of the serpentinite stability to 60–70°C higher temperatures at 1.8 GPa than the antigorite stability calculated in the Al-free system. The antigorite from our study has the highest Al–Cr contents among all experimental studies and therefore likely constraints the maximum stability of antigorite in natural systems. Comparison of experimental results with olivine–orthopyroxene–chlorite–tremolite assemblages outcropping in Cerro del Almirez indicates that peak metamorphic conditions were 680–710°C and 1.6–1.9 GPa.
Contributions to Mineralogy and Petrology – Springer Journals
Published: Jun 20, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.