Overexpression of human DNA repair protein N-methylpurine-DNA glycosylase results in the increased removal of N-methylpurines in DNA without a concomitant increase in resistance to alkylating agents in Chinese hamster ovary cells
Overexpression of human DNA repair protein N-methylpurine-DNA glycosylase results in the...
Ibeanu, G.; Hartenstein, B.; Dunn, W.C.; Chang, L.-Y.; Hofmann, E.; Coquerelle, T.; Mitra, S.; Kaina, B.
1992-11-01 00:00:00
N-Alkylpurines induced in DNA by simple monofunctional alkylating agents are known to be cytotoxic and possibly indirectly mutagenic. These adducts are removed by the ubiquitous N-methylpurine-DNA glycosylase (MPG) in a multistep repair pathway. Chinese hamster ovary (CHO) cell clones expressing 2- to 16-fold enhanced levels of MPG activity were isolated from cells stably transfected with human MPG cDNA expression plasmids. The in vivo removal of 3-methyladenine and 7-methylguanine from some of these lines was analyzed and was observed to reflect their MPG levels. These cell lines did not develop increased resistance, as compared to the control, in regards to cytotoxic, mutagenic and sister chromatid exchange inducing effects of the alkylating agents that induce 3-alkyladenine and 7-alkylguanine as the major alkyl adducts in DNA. These results suggest that the MPG activity is not limiting in the multi-step repair pathway of N-alkylpurines in CHO cells.
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pngCarcinogenesisOxford University Presshttp://www.deepdyve.com/lp/oxford-university-press/overexpression-of-human-dna-repair-protein-n-methylpurine-dna-89VKVJXJvV
Overexpression of human DNA repair protein N-methylpurine-DNA glycosylase results in the increased removal of N-methylpurines in DNA without a concomitant increase in resistance to alkylating agents in Chinese hamster ovary cells
N-Alkylpurines induced in DNA by simple monofunctional alkylating agents are known to be cytotoxic and possibly indirectly mutagenic. These adducts are removed by the ubiquitous N-methylpurine-DNA glycosylase (MPG) in a multistep repair pathway. Chinese hamster ovary (CHO) cell clones expressing 2- to 16-fold enhanced levels of MPG activity were isolated from cells stably transfected with human MPG cDNA expression plasmids. The in vivo removal of 3-methyladenine and 7-methylguanine from some of these lines was analyzed and was observed to reflect their MPG levels. These cell lines did not develop increased resistance, as compared to the control, in regards to cytotoxic, mutagenic and sister chromatid exchange inducing effects of the alkylating agents that induce 3-alkyladenine and 7-alkylguanine as the major alkyl adducts in DNA. These results suggest that the MPG activity is not limiting in the multi-step repair pathway of N-alkylpurines in CHO cells.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.