Local charge measurement using off-axis electron holography
Local charge measurement using off-axis electron holography
Beleggia, M; Gontard, L C; Dunin-Borkowski, R E
2016-07-27 00:00:00
A model-independent approach based on Gauss’ theorem for measuring the local charge in a specimen from an electron-optical phase image recorded using off-axis electron holography was recently proposed. Here, we show that such a charge measurement is reliable when it is applied to determine the total charge enclosed within an object. However, the situation is more complicated for a partial charge measurement when the integration domain encloses only part of the object. We analyze in detail the effects on charge measurement of the mean inner potential of the object, of the presence of induced charges on nearby supports/electrodes and of noise. We perform calculations for spherical particles and highlight the differences when dealing with other object shapes. Our analysis is tested using numerical simulations and applied to the interpretation of an experimental dataset recorded from a sapphire particle.
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pngJournal of Physics D: Applied PhysicsIOP Publishinghttp://www.deepdyve.com/lp/iop-publishing/local-charge-measurement-using-off-axis-electron-holography-83laFOnLzW
Local charge measurement using off-axis electron holography
A model-independent approach based on Gauss’ theorem for measuring the local charge in a specimen from an electron-optical phase image recorded using off-axis electron holography was recently proposed. Here, we show that such a charge measurement is reliable when it is applied to determine the total charge enclosed within an object. However, the situation is more complicated for a partial charge measurement when the integration domain encloses only part of the object. We analyze in detail the effects on charge measurement of the mean inner potential of the object, of the presence of induced charges on nearby supports/electrodes and of noise. We perform calculations for spherical particles and highlight the differences when dealing with other object shapes. Our analysis is tested using numerical simulations and applied to the interpretation of an experimental dataset recorded from a sapphire particle.
Journal
Journal of Physics D: Applied Physics
– IOP Publishing
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.