Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Schmitt, E. Debold, Ferhaan Ahmad, Amy Armstrong, A. Frederico, D. Conner, U. Mende, M. Lohse, D. Warshaw, C. Seidman, J. Seidman (2006)
Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor functionProceedings of the National Academy of Sciences, 103
M. Spindler, K. Saupe, M. Christe, H. Sweeney, C. Seidman, J. Seidman, J. Ingwall (1998)
Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy.The Journal of clinical investigation, 101 8
A. Kimura, H. Harada, J-E Park, H. Nishi, M. Satoh, Megumi Takahashi, S. Hiroi, T. Sasaoka, N. Ohbuchi, Takeyuki Nakamura, T. Koyanagi, T. Hwang, J. Choo, Kyu-Sung Chung, A. Hasegawa, R. Nagai, O. Okazaki, Hiroshi Nakamura, M. Matsuzaki, T. Sakamoto, H. Toshima, Y. Koga, T. Imaizumi, T. Sasazuki (1997)
Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathyNature Genetics, 16
R. Prabhakar, Greg Boivin, I. Grupp, Brian Hoit, G. Arteaga, John Solaro, D. Wieczorek (2001)
A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice.Journal of molecular and cellular cardiology, 33 10
F. Yumoto, Qunwei Lu, S. Morimoto, Hiroyuki Tanaka, N. Kono, K. Nagata, T. Ojima, F. Takahashi-Yanaga, Y. Miwa, T. Sasaguri, K. Nishita, M. Tanokura, I. Ohtsuki (2005)
Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy.Biochemical and biophysical research communications, 338 3
A. Sanbe, D. Nelson, J. Gulick, E. Setser, H. Osińska, Xuejun Wang, T. Hewett, R. Klevitsky, E. Hayes, D. Warshaw, J. Robbins (2000)
In Vivo Analysis of an Essential Myosin Light Chain Mutation Linked to Familial Hypertrophic CardiomyopathyCirculation Research: Journal of the American Heart Association, 87
A. Schmidtmann, C. Lindow, S. Villard, A. Heuser, A. Mügge, R. Geßner, C. Granier, K. Jaquet (2005)
Cardiac troponin C‐L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to CThe FEBS Journal, 272
S. Lange, D. Auerbach, P. Mcloughlin, E. Perriard, B. Schäfer, J. Perriard, E. Ehler (2002)
Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2Journal of Cell Science, 115
M. Heller, M. Nili, E. Homsher, L. Tobacman (2003)
Cardiomyopathic Tropomyosin Mutations That Increase Thin Filament Ca2+ Sensitivity and Tropomyosin N-domain Flexibility*Journal of Biological Chemistry, 278
Satoshi Morimoto, Qunwei Lu, K. Harada, F. Takahashi-Yanaga, R. Minakami, M. Ohta, T. Sasaguri, I. Ohtsuki (2002)
Ca2+-desensitizing effect of a deletion mutation ΔK210 in cardiac troponin T that causes familial dilated cardiomyopathyProceedings of the National Academy of Sciences of the United States of America, 99
B. Biesiadecki, Tomoyoshi Kobayashi, John Walker, R. Solaro, P. Tombe (2007)
The Troponin C G159D Mutation Blunts Myofilament Desensitization Induced by Troponin I Ser23/24 PhosphorylationCirculation Research, 100
F. Yanaga, S. Morimoto, I. Ohtsuki (1999)
Ca2+ Sensitization and Potentiation of the Maximum Level of Myofibrillar ATPase Activity Caused by Mutations of Troponin T Found in Familial Hypertrophic Cardiomyopathy*The Journal of Biological Chemistry, 274
T. Arimura, Takeharu Hayashi, Yuji Matsumoto, H. Shibata, S. Hiroi, Takeyuki Nakamura, Natsuko Inagaki, K. Hinohara, Megumi Takahashi, Satoh-Itoh Manatsu, T. Sasaoka, T. Izumi, G. Bonne, K. Schwartz, A. Kimura (2007)
Structural analysis of four and half LIM protein-2 in dilated cardiomyopathy.Biochemical and biophysical research communications, 357 1
A. Karibe, L. Tobacman, James Strand, C. Butters, N. Back, L. Bachinski, A. Arai, A. Ortiz, R. Roberts, E. Homsher, L. Fananapazir (2001)
Hypertrophic Cardiomyopathy Caused by a Novel &agr;-Tropomyosin Mutation (V95A) Is Associated With Mild Cardiac Phenotype, Abnormal Calcium Binding to Troponin, Abnormal Myosin Cycling, and Poor PrognosisCirculation: Journal of the American Heart Association, 103
J. Crilley, E. Boehm, E. Blair, B. Rajagopalan, A. Blamire, P. Styles, W. McKenna, I. Ostman-Smith, K. Clarke, H. Watkins (2003)
Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy.Journal of the American College of Cardiology, 41 10
Takeharu Hayashi, T. Arimura, Manatsu Itoh-Satoh, K. Ueda, Shigeru Hohda, Natsuko Inagaki, Megumi Takahashi, H. Hori, M. Yasunami, H. Nishi, Y. Koga, Hiroshi Nakamura, M. Matsuzaki, B. Choi, S. Bae, Cheol You, Kyung Han, J-E Park, R. Knöll, M. Hoshijima, K. Chien, A. Kimura (2004)
Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy.Journal of the American College of Cardiology, 44 11
F. Takahashi-Yanaga, S. Morimoto, Keita Harada, R. Minakami, F. Shiraishi, M. Ohta, Qunwei Lu, T. Sasaguri, Iwao Ohtsuki (2001)
Functional consequences of the mutations in human cardiac troponin I gene found in familial hypertrophic cardiomyopathy.Journal of molecular and cellular cardiology, 33 12
S. Morimoto, F. Yanaga, R. Minakami, I. Ohtsuki (1998)
Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy.The American journal of physiology, 275 1
S. Rajan, Rafeeq Ahmed, G. Jagatheesan, N. Petrashevskaya, G. Boivin, D. Urboniene, G. Arteaga, B. Wolska, R. Solaro, S. Liggett, D. Wieczorek (2007)
Dilated Cardiomyopathy Mutant Tropomyosin Mice Develop Cardiac Dysfunction With Significantly Decreased Fractional Shortening and Myofilament Calcium SensitivityCirculation Research, 101
H. Granzier, Yiming Wu, L. Siegfried, M. LeWinter (2005)
Titin: Physiological Function and Role in Cardiomyopathy and FailureHeart Failure Reviews, 10
H. Niimura, K. Patton, W. McKenna, J. Soults, B. Maron, J. Seidman, C. Seidman (2002)
Sarcomere Protein Gene Mutations in Hypertrophic Cardiomyopathy of the ElderlyCirculation: Journal of the American Heart Association, 105
W. Gao, N. Pérez, C. Seidman, J. Seidman, E. Marbán (1999)
Altered cardiac excitation-contraction coupling in mutant mice with familial hypertrophic cardiomyopathy.The Journal of clinical investigation, 103 5
R. Murphy, J. Mogensen, A. Shaw, T. Kubo, S. Hughes, W. McKenna (2004)
Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathyThe Lancet, 363
S. Harris, C. Bartley, T. Hacker, K. McDonald, P. Douglas, M. Greaser, P. Powers, R. Moss (2002)
Hypertrophic Cardiomyopathy in Cardiac Myosin Binding Protein-C Knockout MiceCirculation Research: Journal of the American Heart Association, 90
Qunwei Lu, S. Morimoto, K. Harada, C. Du, F. Takahashi-Yanaga, Y. Miwa, T. Sasaguri, I. Ohtsuki (2003)
Cardiac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes a Ca2+ desensitization.Journal of molecular and cellular cardiology, 35 12
G. Venkatraman, K. Harada, A. Gomes, W. Kerrick, J. Potter (2003)
Different Functional Properties of Troponin T Mutants That Cause Dilated Cardiomyopathy*Journal of Biological Chemistry, 278
H. Sweeney, H. Feng, Zhao Yang, H. Watkins (1998)
Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function.Proceedings of the National Academy of Sciences of the United States of America, 95 24
K. Poetter, He Jiang, S. Hassanzadeh, S. Master, A. Chang, M. Dalakas, I. Rayment, J. Sellers, L. Fananapazir, N. Epstein (1996)
Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscleNature Genetics, 13
R. Knöll, M. Hoshijima, H. Hoffman, V. Person, I. Lorenzen‐Schmidt, M. Bang, Takeharu Hayashi, N. Shiga, H. Yasukawa, W. Schaper, W. McKenna, M. Yokoyama, N. Schork, J. Omens, A. McCulloch, A. Kimura, C. Gregorio, W. Poller, J. Schaper, H. Schultheiss, K. Chien (2002)
The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated CardiomyopathyCell, 111
M. Lebart, C. Méjean, M. Boyer, C. Roustan, Y. Benyamin (1990)
Localization of a new α-actinin binding site in the COOH — terminal part of actin sequenceBiochemical and Biophysical Research Communications, 173
L. Carrier, K. Boheler, C. Chassagne, D. Bastie, C. Wisnewsky, E. Lakatta, Ketty Schwartz (1992)
Expression of the sarcomeric actin isogenes in the rat heart with development and senescence.Circulation research, 70 5
C. Geier, A. Perrot, C. Özcelik, P. Binner, D. Counsell, K. Hoffmann, B. Pilz, Yvonne Martiniak, K. Gehmlich, P. Ven, D. Fürst, A. Vornwald, E. Hodenberg, P. Nürnberg, T. Scheffold, R. Dietz, K. Osterziel (2003)
Mutations in the Human Muscle LIM Protein Gene in Families With Hypertrophic CardiomyopathyCirculation: Journal of the American Heart Association, 107
T. Arimura, Takeharu Hayashi, H. Terada, S. Lee, Qiang Zhou, Megumi Takahashi, K. Ueda, Tatsuhito Nouchi, Shigeru Hohda, M. Shibutani, M. Hirose, Ju Chen, J-E Park, M. Yasunami, H. Hayashi, A. Kimura (2004)
A Cypher/ZASP Mutation Associated with Dilated Cardiomyopathy Alters the Binding Affinity to Protein Kinase C*Journal of Biological Chemistry, 279
(1998)
J Clin Invest
M. Muthuchamy, Kathy Pieples, P. Rethinasamy, Brian Hoit, Ingrid Grupp, Greg Boivin, B. Wolska, C. Evans, R. Solaro, D. Wieczorek (1999)
Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction.Circulation research, 85 1
M. Chandra, Matthew Tschirgi, J. Tardiff (2005)
Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation.American journal of physiology. Heart and circulatory physiology, 289 5
B. Mohapatra, Shinawe Jimenez, J. Lin, K. Bowles, K. Coveler, J. Marx, Michele Chrisco, R. Murphy, P. Lurie, R. Schwartz, P. Elliott, M. Vatta, W. McKenna, J. Towbin, N. Bowles (2003)
Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis.Molecular genetics and metabolism, 80 1-2
Laura Preston, C. Ashley, C. Redwood (2007)
DCM troponin C mutant Gly159Asp blunts the response to troponin phosphorylation.Biochemical and biophysical research communications, 360 1
J. Mogensen, R. Murphy, T. Shaw, A. Bahl, C. Redwood, H. Watkins, M. Burke, P. Elliott, W. McKenna (2004)
Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy.Journal of the American College of Cardiology, 44 10
D. Fatkin, R. Graham (2002)
Molecular mechanisms of inherited cardiomyopathies.Physiological reviews, 82 4
D. Szczesna, R. Zhang, J. Zhao, M. Jones, G. Guzman, J. Potter (2001)
Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy.The Journal of biological chemistry, 275 1
E. Debold, J. Schmitt, J. Patlak, S. Beck, Jeffrey Moore, J. Seidman, C. Seidman, D. Warshaw (2007)
Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay.American journal of physiology. Heart and circulatory physiology, 293 1
M. Satoh, Megumi Takahashi, T. Sakamoto, M. Hiroe, F. Marumo, A. Kimura (1999)
Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene.Biochemical and biophysical research communications, 262 2
N. Finley, M. Abbott, Ekram Abusamhadneh, V. Gaponenko, W. Dong, G. Gasmi-Seabrook, J. Howarth, M. Rance, R. Solaro, H. Cheung, P. Rosevear (1999)
NMR analysis of cardiac troponin C‐troponin I complexes: effects of phosphorylationFEBS Letters, 453
A. Gomes, Jingsheng Liang, J. Potter (2005)
Mutations in Human Cardiac Troponin I That Are Associated with Restrictive Cardiomyopathy Affect Basal ATPase Activity and the Calcium Sensitivity of Force Development*Journal of Biological Chemistry, 280
P. Robinson, M. Mirza, A. Knott, H. Abdulrazzak, R. Willott, Steven Marston, H. Watkins, C. Redwood (2002)
Alterations in Thin Filament Regulation Induced by a Human Cardiac Troponin T Mutant That Causes Dilated Cardiomyopathy Are Distinct from Those Induced by Troponin T Mutants That Cause Hypertrophic Cardiomyopathy*The Journal of Biological Chemistry, 277
D. Coviello, B. Maron, P. Spirito, H. Watkins, H. Watkins, H. Vosberg, L. Thierfelder, L. Thierfelder, F. Schoen, J. Seidman, C. Seidman, C. Seidman (1997)
Clinical features of hypertrophic cardiomyopathy caused by mutation of a "hot spot" in the alpha-tropomyosin gene.Journal of the American College of Cardiology, 29 3
Cardiomyopathy–causing mutations in sarcomeric proteins
B. Ilkovski, S. Clément, C. Sewry, K. North, S. Cooper (2005)
Defining α-skeletal and α-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathyNeuromuscular Disorders, 15
P. Jääskeläinen, R. Miettinen, P. Kärkkäinen, L. Toivonen, M. Laakso, J. Kuusisto (2004)
Genetics of hypertrophic cardiomyopathy in eastern Finland: few founder mutations with benign or intermediary phenotypesAnnals of Medicine, 36
R. Poley, Xiaolei Xu, M. Vatta, J. Towbin (2010)
Genetic basis of hypertrophic cardiomyopathy
H. Watkins, W. McKenna, L. Thierfelder, H. Suk, R. Anan, A. O'Donoghue, P. Spirito, A. Matsumori, C. Moravec, J. Seidman, C. Seidman (1995)
Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy.The New England journal of medicine, 332 16
D. Michele, Carlen Gomez, Katie Hong, M. Westfall, J. Metzger (2002)
Cardiac Dysfunction in Hypertrophic Cardiomyopathy Mutant Tropomyosin Mice Is Transgene-Dependent, Hypertrophy-Independent, and Improved by &bgr;-BlockadeCirculation Research: Journal of the American Heart Association, 91
B. Ilkovski, S. Clément, C. Sewry, K. North, S. Cooper (2005)
Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy.Neuromuscular disorders : NMD, 15 12
D. Frank, C. Kuhn, H. Katus, N. Frey (2006)
The sarcomeric Z-disc: a nodal point in signalling and diseaseJournal of Molecular Medicine, 84
M. Javadpour, J. Tardiff, I. Pinz, J. Ingwall (2003)
Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T.The Journal of clinical investigation, 112 5
P. Richard, P. Charron, L. Carrier, C. Ledeuil, T. Cheav, C. Pichereau, A. Benaiche, R. Isnard, O. Dubourg, M. Burban, J. Gueffet, A. Millaire, M. Desnos, K. Schwartz, B. Hainque, M. Komajda (2003)
Hypertrophic Cardiomyopathy: Distribution of Disease Genes, Spectrum of Mutations, and Implications for a Molecular Diagnosis StrategyCirculation: Journal of the American Heart Association, 107
R. Vemuri, E. Lankford, K. Poetter, S. Hassanzadeh, K. Takeda, Zu-Xi Yu, V. Ferrans, N. Epstein (1999)
The stretch-activation response may be critical to the proper functioning of the mammalian heart.Proceedings of the National Academy of Sciences of the United States of America, 96 3
J. James, Yan Zhang, H. Osińska, Atsushi Sanbe, R. Klevitsky, T. Hewett, Jeffrey Robbins (2000)
Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy.Circulation research, 87 9
J. Tardiff, T. Hewett, B. Palmer, Charlotte Olsson, S. Factor, R. Moore, J. Robbins, L. Leinwand (1999)
Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy.The Journal of clinical investigation, 104 4
Yuji Matsumoto, Takeharu Hayashi, Natsuko Inagaki, Megumi Takahashi, S. Hiroi, Takeyuki Nakamura, T. Arimura, Kazufumi Nakamura, N. Ashizawa, M. Yasunami, T. Ohe, K. Yano, A. Kimura (2006)
Functional analysis of titin/connectin N2-B mutations found in cardiomyopathyJournal of Muscle Research & Cell Motility, 26
Laura Preston, S. Lipscomb, P. Robinson, J. Mogensen, W. McKenna, H. Watkins, C. Ashley, C. Redwood (2007)
Functional effects of the DCM mutant Gly159Asp Troponin C in skinned muscle fibresPflügers Archiv - European Journal of Physiology, 453
T. Miller, D. Szczesna, P. Housmans, Jiaju Zhao, Fatima Freitas, Aldrin Gomes, L. Culbreath, Jess McCue, Yi Wang, Yuanyuan Xu, W. Kerrick, James Potter (2001)
Abnormal Contractile Function in Transgenic Mice Expressing a Familial Hypertrophic Cardiomyopathy-linked Troponin T (I79N) Mutation*The Journal of Biological Chemistry, 276
T. Olson, V. Michels, S. Thibodeau, Y. Tai, M. Keating (1998)
Actin mutations in dilated cardiomyopathy, a heritable form of heart failure.Science, 280 5364
M. Tyska, E. Hayes, Michael Giewat, C. Seidman, J. Seidman, D. Warshaw (2000)
Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy.Circulation research, 86 7
N. Epstein, G. Cohn, F. Cyran, L. Fananapazir (1992)
Differences in Clinical Expression of Hypertrophic Cardiomyopathy Associated With Two Distinct Mutations in the β‐Myosin Heavy Chain Gene: A 908Leu→Val Mutation and a 403Arg→gGln MutationCirculation, 86
A. Geisterfer-Lowrance, S. Kass, G. Tanigawa, H. Vosberg, W. McKenna, C. Seidman, J. Seidman (1990)
A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutationCell, 62
L. Thierfelder, H. Watkins, C. Macrae, R. Lamas, W. McKenna, H. Vosberg, J. Seldman, C. Seidman (1994)
α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomereCell, 77
A. Geisterfer-Lowrance, M. Christe, D. Conner, J. Ingwall, F. Schoen, C. Seidman, J. Seidman (1996)
A Mouse Model of Familial Hypertrophic CardiomyopathyScience, 272
Duanxiang Li, G. Czernuszewicz, O. Gonzalez, T. Tapscott, A. Karibe, J. Durand, R. Brugada, R. Hill, Jane Gregoritch, Jeffrey Anderson, M. Quiñones, L. Bachinski, R. Roberts (2001)
Novel Cardiac Troponin T Mutation as a Cause of Familial Dilated CardiomyopathyCirculation: Journal of the American Heart Association, 104
P. Richardson, W. McKenna, M. Bristow, B. Maisch, B. Mautner, J. O’Connell, E. Olsen, G. Thiene, J. Goodwin, I. Gyárfás, I. Martin, P. Nordet (1996)
Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies.Circulation, 93 5
Sharon Siedner, M. Krüger, M. Schroeter, Doris Metzler, W. Roell, B. Fleischmann, J. Hescheler, G. Pfitzer, R. Stehle (2003)
Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heartThe Journal of Physiology, 548
M. Chandra, V. Rundell, J. Tardiff, L. Leinwand, P. Tombe, R. Solaro (2001)
Ca2+ activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin TAmerican Journal of Physiology-heart and Circulatory Physiology, 280
K. Yamauchi-Takihara, C. Nakajima-Taniguchi, H. Matsui, Yasushi Fujio, K. Kunisada, Seiki Nagata, Tadamitsu Kishimoto (1996)
Clinical implications of hypertrophic cardiomyopathy associated with mutations in the alpha-tropomyosin gene.Heart, 76
D. Dumka, J. Talent, I. Akopova, G. Guzman, D. Szczesna‐Cordary, J. Borejdo (2006)
E22K mutation of RLC that causes familial hypertrophic cardiomyopathy in heterozygous mouse myocardium: effect on cross-bridge kinetics.American journal of physiology. Heart and circulatory physiology, 291 5
Audrey Chang, K. Harada, M. Ackerman, J. Potter (2005)
Functional Consequences of Hypertrophic and Dilated Cardiomyopathy-causing Mutations in α-Tropomyosin*Journal of Biological Chemistry, 280
H. Watkins, A. Rosenzweig, D. Hwang, T. Levi, W. McKenna, C. Seidman, J. Seidman (1992)
Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy.The New England journal of medicine, 326 17
A. Marian, Yun-hua Wu, Do Lim, Meghan McCluggage, K. Youker, Q. Yu, Ramón Brugada, F. DeMayo, M. Quiñones, R. Roberts (1999)
A transgenic rabbit model for human hypertrophic cardiomyopathy.The Journal of clinical investigation, 104 12
A. Marian, Guiling Zhao, Y. Seta, R. Roberts, Q. Yu (1997)
Expression of a mutant (Arg92Gln) human cardiac troponin T, known to cause hypertrophic cardiomyopathy, impairs adult cardiac myocyte contractility.Circulation research, 81 1
A. Gordon, E. Homsher, M. Regnier (2000)
Regulation of contraction in striated muscle.Physiological reviews, 80 2
C. Bookwalter, K. Trybus (2006)
Functional Consequences of a Mutation in an Expressed Human α-Cardiac Actin at a Site Implicated in Familial Hypertrophic Cardiomyopathy*Journal of Biological Chemistry, 281
W. Wong, T. Doyle, P. Cheung, T. Olson, E. Reisler (2004)
Functional studies of yeast actin mutants corresponding to human cardiomyopathy mutationsJournal of Muscle Research & Cell Motility, 22
D. Georgakopoulos, M. Christe, Michael Giewat, C. Seidman, J. Seidman, D. Kass (1999)
The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an α-cardiac myosin heavy chain missense mutationNature Medicine, 5
E. Rust, F. Albayya, J. Metzger (1999)
Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins.The Journal of clinical investigation, 103 10
R. Bottinelli, Domenico Coviello, C. Redwood, M. Pellegrino, Barry Maron, P. Spirito, Hugh Watkins, Carlo Reggiani (1998)
A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity.Circulation research, 82 1
M. Kamisago, S. Sharma, S. DePalma, S. Solomon, P. Sharma, B. McDonough, L. Smoot, M. Mullen, P. Woolf, E. Wigle, J. Seidman, C. Seidman (2001)
Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy.The New England journal of medicine, 343 23
H. Watkins, C. Seidman, J. Seidman, H. Feng, H. Sweeney (1996)
Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action.The Journal of clinical investigation, 98 11
R. Prabhakar, N. Petrashevskaya, A. Schwartz, B. Aronow, G. Boivin, J. Molkentin, D. Wieczorek (2003)
A mouse model of familial hypertrophic cardiomyopathy caused by a α-tropomyosin mutationMolecular and Cellular Biochemistry, 251
J. Mogensen, T. Kubo, M. Duque, W. Uribe, A. Shaw, R. Murphy, J. Gimeno, P. Elliott, W. McKenna (2003)
Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations.The Journal of clinical investigation, 111 2
D. Szczesna‐Cordary, G. Guzman, Jiaju Zhao, O. Hernandez, Jianqin Wei, Zoraida Diaz-Perez (2005)
The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic miceJournal of Cell Science, 118
Qinglin Yang, A. Sanbe, H. Osińska, T. Hewett, R. Klevitsky, J. Robbins (1998)
A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy.The Journal of clinical investigation, 102 7
T. Olson, Nina Kishimoto, F. Whitby, V. Michels (2001)
Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy.Journal of molecular and cellular cardiology, 33 4
K. Harada, J. Potter (2004)
Familial Hypertrophic Cardiomyopathy Mutations from Different Functional Regions of Troponin T Result in Different Effects on the pH and Ca2+ Sensitivity of Cardiac Muscle Contraction*Journal of Biological Chemistry, 279
Bernard Hoffmann, Hajo Schmidt-Traub, A. Perrot, K. Osterziel, Reinhard Geßner (2001)
First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathyHuman Mutation, 17
H. Ashrafian, C. Redwood, E. Blair, H. Watkins (2003)
Hypertrophic cardiomyopathy:a paradigm for myocardial energy depletion.Trends in genetics : TIG, 19 5
M. Vatta, B. Mohapatra, Shinawe Jimenez, X. Sanchez, G. Faulkner, Z. Perles, G. Sinagra, J. Lin, Thuy Vu, Qiang Zhou, K. Bowles, A. Lenarda, L. Schimmenti, M. Fox, Michelle Chrisco, R. Murphy, W. McKenna, P. Elliott, N. Bowles, Ju Chen, G. Valle, J. Towbin (2003)
Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction.Journal of the American College of Cardiology, 42 11
C. Du, S. Morimoto, K. Nishii, R. Minakami, M. Ohta, N. Tadano, Qunwei Lu, Yuan-yuan Wang, D. Zhan, M. Mochizuki, S. Kita, Y. Miwa, F. Takahashi-Yanaga, T. Iwamoto, I. Ohtsuki, T. Sasaguri (2007)
Knock-In Mouse Model of Dilated Cardiomyopathy Caused by Troponin MutationCirculation Research, 101
J. James, Yan Zhang, Kathy Wright, Sra Witt, Elizabeth Glascock, H. Osińska, R. Klevitsky, Lisa Martin, K. Yager, A. Sanbe, J. Robbins (2002)
Transgenic rabbits expressing mutant essential light chain do not develop hypertrophic cardiomyopathy.Journal of molecular and cellular cardiology, 34 7
S. Morimoto, F. Yanaga, R. Minakami, I. Ohtsuki (1998)
Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy.American journal of physiology. Cell physiology, 275 1
A. Osio, Lily Tan, S. Chen, R. Lombardi, S. Nagueh, S. Shete, R. Roberts, J. Willerson, A. Marian (2007)
Myozenin 2 Is a Novel Gene for Human Hypertrophic CardiomyopathyCirculation Research, 100
M. Mirza, Steven Marston, R. Willott, C. Ashley, J. Mogensen, W. McKenna, P. Robinson, C. Redwood, H. Watkins (2005)
Dilated Cardiomyopathy Mutations in Three Thin Filament Regulatory Proteins Result in a Common Functional Phenotype*Journal of Biological Chemistry, 280
Manatsu Itoh-Satoh, Takeharu Hayashi, H. Nishi, Y. Koga, T. Arimura, T. Koyanagi, Megumi Takahashi, Shigeru Hohda, K. Ueda, Tatsuhito Nouchi, M. Hiroe, F. Marumo, T. Imaizumi, M. Yasunami, A. Kimura (2002)
Titin mutations as the molecular basis for dilated cardiomyopathy.Biochemical and biophysical research communications, 291 2
Søren Vang, T. Corydon, A. Børglum, Melissa Scott, J. Frydman, J. Mogensen, N. Gregersen, P. Bross (2005)
Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formationThe FEBS Journal, 272
M. Lorenz, K. Poole, D. Popp, G. Rosenbaum, K. Holmes (1995)
An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels.Journal of molecular biology, 246 1
S. Lowey (2002)
Functional consequences of mutations in the myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy.Trends in cardiovascular medicine, 12 8
Over the last two decades, a large number of mutations have been identified in sarcomeric proteins as a cause of hypertrophic, dilated or restrictive cardiomyopathy. Functional analyses of mutant proteins in vitro have revealed several important functional changes in sarcomeric proteins that might be primarily involved in the pathogenesis of each cardiomyopathy. Creation of transgenic or knock-in animals expressing mutant proteins in their hearts confirmed that these mutations in genes for sarcomeric proteins induced distinct types of cardiomyopathies and provided useful animal models to explore the molecular pathogenic mechanisms and potential therapeutics of cardiomyopathy in vivo. In this review, I discuss the functional consequences of mutations in different sarcomeric proteins found in hypertrophic, dilated, and restrictive cardiomyopathies in conjunction with their effects on cardiac structure and function in vivo and their possible molecular and cellular mechanisms, which underlie the pathogenesis of these inherited cardiomyopathies.
Cardiovascular Research – Oxford University Press
Published: Mar 1, 2008
Keywords: Sarcomere Gene mutation Hypertrophic cardiomyopathy Dilated cardiomyopathy Restricted cardiomyopathy
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.