Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Dalle, C. Longuet, S. Costes, C. Broca, O. Faruque, G. Fontes, E. Hani, D. Bataille (2004)
Glucagon Promotes cAMP-response Element-binding Protein Phosphorylation via Activation of ERK1/2 in MIN6 Cell Line and Isolated Islets of Langerhans*Journal of Biological Chemistry, 279
L. Huang, K. Durick, J. Weiner, J. Chun, Susan Taylor (1997)
Identification of a Novel Protein Kinase A Anchoring Protein That Binds Both Type I and Type II Regulatory Subunits*The Journal of Biological Chemistry, 272
N. Alto, S. Soderling, N. Hoshi, L. Langeberg, R. Fayos, P. Jennings, John Scott (2003)
Bioinformatic design of A-kinase anchoring protein-in silico: A potent and selective peptide antagonist of type II protein kinase A anchoringProceedings of the National Academy of Sciences of the United States of America, 100
Jin Zhang, C. Hupfeld, Susan Taylor, J. Olefsky, R. Tsien (2005)
Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytesNature, 437
Nils Reinton, Philippe Collas, Trine Haugen, B. Skålhegg, Vidar Hansson, T. Jahnsen, K. Taskén (2000)
Localization of a novel human A-kinase-anchoring protein, hAKAP220, during spermatogenesis.Developmental biology, 223 1
M. Silhol, M. Tyagi, M. Giacca, B. Lebleu, E. Vivés (2002)
Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.European journal of biochemistry, 269 2
P. Jones, S. Persaud (1998)
Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic beta-cells.Endocrine reviews, 19 4
U. Jhala, G. Canettieri, R. Screaton, R. Kulkarni, S. Krajewski, John Reed, John Walker, Xueying Lin, M. White, M. Montminy (2003)
cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2Genes & Development, 17
G. Evans, A. Morgan (2003)
Regulation of the exocytotic machinery by cAMP-dependent protein kinase: implications for presynaptic plasticity.Biochemical Society transactions, 31 Pt 4
N. Danial, C. Gramm, L. Scorrano, Chen-Yu Zhang, S. Krauss, A. Ranger, S. Datta, M. Greenberg, L. Licklider, B. Lowell, S. Gygi, S. Korsmeyer (2003)
BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosisNature, 424
M. Colledge, J. Scott (1999)
AKAPs: from structure to function.Trends in cell biology, 9 6
P. Béguin, K. Nagashima, Motoi Nishimura, T. Gonoi, S. Seino (1999)
PKA‐mediated phosphorylation of the human KATP channel: separate roles of Kir6.2 and SUR1 subunit phosphorylationThe EMBO Journal, 18
W. Wong, John Scott (2004)
AKAP signalling complexes: focal points in space and timeNature Reviews Molecular Cell Biology, 5
J. Beavo, L. Brunton (2002)
Cyclic nucleotide research — still expanding after half a centuryNature Reviews Molecular Cell Biology, 3
Iqbal Massodi, G. Bidwell, D. Raucher (2005)
Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery.Journal of controlled release : official journal of the Controlled Release Society, 108 2-3
E. Sutherland (1972)
Studies on the mechanism of hormone action.Science, 177 4047
Hua Li, Babett Degenhardt, Derek Tobin, Z. Yao, K. Taskén, Vassilios Papadopoulos (2001)
Identification, localization, and function in steroidogenesis of PAP7: a peripheral-type benzodiazepine receptor- and PKA (RIalpha)-associated protein.Molecular endocrinology, 15 12
D. Carr, Renata Stofko-Hahn, I. Fraser, Sarah Bishop, T. Acott, R. Brennan, John Scott (1991)
Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif.The Journal of biological chemistry, 266 22
A. Stokka, F. Gesellchen, C. Carlson, John Scott, F. Herberg, K. Taskén (2006)
Characterization of A-kinase-anchoring disruptors using a solution-based assay.The Biochemical journal, 400 3
F. Herberg, A. Maleszka, T. Eide, L. Vossebein, K. Taskén (2000)
Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding.Journal of molecular biology, 298 2
M. Gold, B. Lygren, P. Dokurno, N. Hoshi, G. McConnachie, K. Taskén, C. Carlson, John Scott, D. Barford (2006)
Molecular basis of AKAP specificity for PKA regulatory subunits.Molecular cell, 24 3
G. Gonzalez, M. Montminy (1989)
Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133Cell, 59
Polonca Küssel-Andermann, A. El-Amraoui, S. Safieddine, J. Hardelin, Sylvie Nouaille, J. Camonis, C. Petit (2000)
Unconventional Myosin VIIA Is a Novel A-kinase-anchoring Protein*The Journal of Biological Chemistry, 275
Iain Fraser, S. Tavalin, L. Lester, L. Langeberg, Ann Westphal, R. Dean, N. Marrion, J. Scott (1998)
A novel lipid‐anchored A‐kinase Anchoring Protein facilitates cAMP‐responsive membrane eventsThe EMBO Journal, 17
Printed in U.S.A. Copyright © 2001 by The Endocrine Society Targeted Protein Kinase A and PP-2B Regulate Insulin Secretion through Reversible Phosphorylation*
L. Burns-Hamuro, Yuliang Ma, S. Kammerer, U. Reineke, C. Self, C. Cook, G. Olson, C. Cantor, A. Braun, Susan Taylor (2003)
Designing isoform-specific peptide disruptors of protein kinase A localizationProceedings of the National Academy of Sciences of the United States of America, 100
A. Joliot, A. Prochiantz (2004)
Transduction peptides: from technology to physiologyNature Cell Biology, 6
Lily Huang, K. Durick, Joshua Weiner, Jerold Chun, Susan Taylor (1997)
D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain.Proceedings of the National Academy of Sciences of the United States of America, 94 21
Barry Johnson, T. Scheuer, W. Catterall (1994)
Voltage-dependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase.Proceedings of the National Academy of Sciences of the United States of America, 91 24
D. Le-Nguyen, D. Nalis, B. Castro (2009)
Solid phase synthesis of a trypsin inhibitor isolated from the Cucurbitaceae Ecballium elaterium.International journal of peptide and protein research, 34 6
K. Taskén, E. Aandahl (2004)
Localized effects of cAMP mediated by distinct routes of protein kinase A.Physiological reviews, 84 1
L. Lester, L. Langeberg, J. Scott (1997)
Anchoring of protein kinase A facilitates hormone-mediated insulin secretion.Proceedings of the National Academy of Sciences of the United States of America, 94 26
F. Rabanal, W. DeGrado, P. Dutton (1996)
Use of 2,2′-dithiobis(5-nitropyridine) for the heterodimerization of cysteine containing peptides. Introduction of the 5-nitro-2-pyridinesulfenyl groupTetrahedron Letters, 37
C. Carlson, B. Lygren, T. Berge, N. Hoshi, W. Wong, K. Taskén, John Scott (2006)
Delineation of Type I Protein Kinase A-selective Signaling Events Using an RI Anchoring Disruptor*Journal of Biological Chemistry, 281
S. Seino, T. Shibasaki (2005)
PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis.Physiological reviews, 85 4
Yan Yang, K. Gillis (2004)
A Highly Ca2+-sensitive Pool of Granules Is Regulated by Glucose and Protein Kinases in Insulin-secreting INS-1 CellsThe Journal of General Physiology, 124
Christian Hundsrucker, G. Krause, M. Beyermann, A. Prinz, B. Zimmermann, O. Diekmann, D. Lorenz, E. Stefan, P. Nedvetsky, M. Dathe, F. Christian, T. McSorley, E. Krause, G. McConnachie, F. Herberg, John Scott, W. Rosenthal, E. Klussmann (2006)
High-affinity AKAP7delta-protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides.The Biochemical journal, 396 2
M. Newlon, M. Roy, D. Morikis, Z. Hausken, V. Coghlan, John Scott, P. Jennings (1998)
The molecular basis for protein kinase A anchoring revealed by solution NMRNature Structural Biology, 6
S. Vijayaraghavan, S. Goueli, M. Davey, D. Carr (1997)
Protein Kinase A-anchoring Inhibitor Peptides Arrest Mammalian Sperm Motility*The Journal of Biological Chemistry, 272
Falk Duchardt, M. Fotin‐Mleczek, H. Schwarz, R. Fischer, R. Brock (2007)
A Comprehensive Model for the Cellular Uptake of Cationic Cell‐penetrating PeptidesTraffic, 8
S. Schwarze, A. Ho, Adamina Vocero-Akbani, S. Dowdy (1999)
In vivo protein transduction: delivery of a biologically active protein into the mouse.Science, 285 5433
Youwei Jiang, A. Cypess, E. Muse, Cui-Rong Wu, C. Unson, R. Merrifield, T. Sakmar (2001)
Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinaseProceedings of the National Academy of Sciences of the United States of America, 98
M. Hällbrink, A. Florén, A. Florén, Anna Elmquist, Anna Elmquist, M. Pooga, Tamas Bartfai, Ü. Langel, Ü. Langel (2001)
Cargo delivery kinetics of cell-penetrating peptides.Biochimica et biophysica acta, 1515 2
D. Carr, Z. Hausken, I. Fraser, I. Fraser, Renata Stofko-Hahn, John Scott (1992)
Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain.The Journal of biological chemistry, 267 19
J. Henquin (2000)
Triggering and amplifying pathways of regulation of insulin secretion by glucose.Diabetes, 49 11
S. Schwarze, K. Hruska, S. Dowdy (2000)
Protein transduction: unrestricted delivery into all cells?Trends in cell biology, 10 7
Christian Rosenmund, D. Carr, S. Bergeson, G. Nilaver, John Scott, G. Westbrook (1994)
Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neuronsNature, 368
A. Frankel, C. Pabo (1988)
Cellular uptake of the tat protein from human immunodeficiency virusCell, 55
O. Kaidanovich‐Beilin, H. Eldar-Finkelman (2006)
Peptides targeting protein kinases: strategies and implications.Physiology, 21
J. Scott, R. Stofko, J. McDonald, J. Comer, E. Vitalis, J. Mangili (1990)
Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase.The Journal of biological chemistry, 265 35
P. Cohen (2002)
The origins of protein phosphorylationNature Cell Biology, 4
The FASEB Journal Research Communication Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells
E. Vivés (2005)
Present and future of cell-penetrating peptide mediated delivery systems: "is the Trojan horse too wild to go only to Troy?".Journal of controlled release : official journal of the Controlled Release Society, 109 1-3
M. Green, P. Loewenstein (1988)
Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator proteinCell, 55
Kimberly Dodge-Kafka, J. Soughayer, Geneviève Paré, J. Michel, L. Langeberg, M. Kapiloff, John Scott (2005)
The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathwaysNature, 437
Rubin Cs (1994)
A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP.Biochimica et Biophysica Acta, 1224
R. Angelo, C. Rubin (1998)
Molecular Characterization of an Anchor Protein (AKAPCE) That Binds the RI Subunit (RCE) of Type I Protein Kinase A from Caenorhabditis elegans*The Journal of Biological Chemistry, 273
M. Asfari, D. Janjic, P. Meda, Guodong Li, P. Halban, C. Wollheim (1992)
Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines.Endocrinology, 130 1
Stimulation of numerous G protein-coupled receptors leads to the elevation of intracellular concentrations of cAMP, which subsequently activates the PKA pathway. Specificity of the PKA signaling module is determined by a sophisticated subcellular targeting network that directs the spatiotemporal activation of the kinase. This specific compartmentalization mechanism occurs through high-affinity interactions of PKA with A-kinase anchoring proteins (AKAPs), the role of which is to target the kinase to discrete subcellular microdomains. Recently, a peptide designated “AKAPis” has been proposed to competitively inhibit PKA-AKAP interactions in vitro. We therefore sought to characterize a cell-permeable construct of the AKAPis inhibitor and use it as a tool to characterize the impact of PKA compartmentalization by AKAPs. Using insulin-secreting pancreatic β-cells (INS-1 cells), we showed that TAT-AKAPis (at a micromolar range) dose dependently disrupted a significant fraction of endogenous PKA-AKAP interactions. Immunoflurescent analysis also indicated that TAT-AKAPis significantly affected PKA subcellular localization. Furthermore, TAT-AKAPis markedly attenuated glucagon-induced phosphorylations of p44/p42 MAPKs and cAMP response element binding protein, which are downstream effectors of PKA. In parallel, TAT-AKAPis dose dependently inhibited the glucagon-induced potentiation of insulin release. Therefore, AKAP-mediated subcellular compartmentalization of PKA represents a key mechanism for PKA-dependent phosphorylation events and potentiation of insulin secretion in intact pancreatic β-cells. More interestingly, our data highlight the effectiveness of the cell-permeable peptide-mediated approach to monitoring in cellulo PKA-AKAP interactions and delineating PKA-dependent phosphorylation events underlying specific cellular responses.
AJP Cell Physiology – The American Physiological Society
Published: Feb 21, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.