Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Influence of soot carbon on the soil-air partitioning of polycyclic aromatic hydrocarbons.

Influence of soot carbon on the soil-air partitioning of polycyclic aromatic hydrocarbons. Soil-air partitioning is one of the key processes controlling the regional and global cycling and storage of polycyclic aromatic hydrocarbons (PAHs). However, the specific processes dominating the partitioning of PAHs between these two environmental compartments still need to be elucidated. Stable and distinct atmospheric conditions paralleling different soil properties are found at Tenerife island (28 degrees 18'N, 16 degrees 29'W), which is located in permanent inversion layer conditions, and they provide interesting model cases for the study of air-soil partitioning. Analysis of phenanthrene, pyrene, fluoranthene, and chrysene showed concentrations 4- to 10-fold higher below than above the inversion layer. Similarly, soil total organic carbon (TOC) and black carbon (BC) were 11 and 3 times higher, respectively, below the inversion layer than above. The octanol-air partition coefficient (K(OA)) derived model provides a good description of PAH soil-air partitioning coefficients (K(P)) below the inversion layer but underpredicts them in the area dominated by deposition of long-range transported aerosols without inputs of organic matter from local vegetation. Inclusion of soot carbon in the soil-air partitioning model results in good agreement between predicted and measured K(P) in this area but in overpredicted K(P) values for the soils under the vegetation cover, which shows that the influence of soil soot carbon on PAH air-soil partitioning depends on its abundance relative to soil organic carbon. Absorption into organic matter is the dominant process in soils containing high organic carbon concentrations, whereas adsorption onto soot carbon becomes relevant in soils with low organic carbon and high soot content. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science & Technology Pubmed

Influence of soot carbon on the soil-air partitioning of polycyclic aromatic hydrocarbons.

Environmental Science & Technology , Volume 37 (12): -2594 – Oct 23, 2003

Influence of soot carbon on the soil-air partitioning of polycyclic aromatic hydrocarbons.


Abstract

Soil-air partitioning is one of the key processes controlling the regional and global cycling and storage of polycyclic aromatic hydrocarbons (PAHs). However, the specific processes dominating the partitioning of PAHs between these two environmental compartments still need to be elucidated. Stable and distinct atmospheric conditions paralleling different soil properties are found at Tenerife island (28 degrees 18'N, 16 degrees 29'W), which is located in permanent inversion layer conditions, and they provide interesting model cases for the study of air-soil partitioning. Analysis of phenanthrene, pyrene, fluoranthene, and chrysene showed concentrations 4- to 10-fold higher below than above the inversion layer. Similarly, soil total organic carbon (TOC) and black carbon (BC) were 11 and 3 times higher, respectively, below the inversion layer than above. The octanol-air partition coefficient (K(OA)) derived model provides a good description of PAH soil-air partitioning coefficients (K(P)) below the inversion layer but underpredicts them in the area dominated by deposition of long-range transported aerosols without inputs of organic matter from local vegetation. Inclusion of soot carbon in the soil-air partitioning model results in good agreement between predicted and measured K(P) in this area but in overpredicted K(P) values for the soils under the vegetation cover, which shows that the influence of soil soot carbon on PAH air-soil partitioning depends on its abundance relative to soil organic carbon. Absorption into organic matter is the dominant process in soils containing high organic carbon concentrations, whereas adsorption onto soot carbon becomes relevant in soils with low organic carbon and high soot content.

Loading next page...
 
/lp/pubmed/influence-of-soot-carbon-on-the-soil-air-partitioning-of-polycyclic-7Hmo5QpIfI

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0013-936X
DOI
10.1021/es0201449
pmid
12854704

Abstract

Soil-air partitioning is one of the key processes controlling the regional and global cycling and storage of polycyclic aromatic hydrocarbons (PAHs). However, the specific processes dominating the partitioning of PAHs between these two environmental compartments still need to be elucidated. Stable and distinct atmospheric conditions paralleling different soil properties are found at Tenerife island (28 degrees 18'N, 16 degrees 29'W), which is located in permanent inversion layer conditions, and they provide interesting model cases for the study of air-soil partitioning. Analysis of phenanthrene, pyrene, fluoranthene, and chrysene showed concentrations 4- to 10-fold higher below than above the inversion layer. Similarly, soil total organic carbon (TOC) and black carbon (BC) were 11 and 3 times higher, respectively, below the inversion layer than above. The octanol-air partition coefficient (K(OA)) derived model provides a good description of PAH soil-air partitioning coefficients (K(P)) below the inversion layer but underpredicts them in the area dominated by deposition of long-range transported aerosols without inputs of organic matter from local vegetation. Inclusion of soot carbon in the soil-air partitioning model results in good agreement between predicted and measured K(P) in this area but in overpredicted K(P) values for the soils under the vegetation cover, which shows that the influence of soil soot carbon on PAH air-soil partitioning depends on its abundance relative to soil organic carbon. Absorption into organic matter is the dominant process in soils containing high organic carbon concentrations, whereas adsorption onto soot carbon becomes relevant in soils with low organic carbon and high soot content.

Journal

Environmental Science & TechnologyPubmed

Published: Oct 23, 2003

There are no references for this article.