Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Okholm, J. Nielsen, Mathias Vinther, R. Sørensen, David Schaffert, J. Kjems (2014)
Quantification of cellular uptake of DNA nanostructures by qPCR.Methods, 67 2
J. Mikkilä, Antti-Pekka Eskelinen, Elina Niemelä, V. Linko, M. Frilander, P. Törmä, M. Kostiainen (2014)
Virus-encapsulated DNA origami nanostructures for cellular delivery.Nano letters, 14 4
Yuan-Jyue Chen, B. Groves, Richard Muscat, Georg Seelig (2015)
DNA nanotechnology from the test tube to the cell.Nature nanotechnology, 10 9
S. Moghimi, P. Symonds, J. Murray, A. Hunter, G. Dębska, A. Szewczyk (2005)
A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy.Molecular therapy : the journal of the American Society of Gene Therapy, 11 6
Qiao Jiang, Chen Song, Jeanette Nangreave, Xiaowei Liu, Linshu Lin, D. Qiu, Zhen‐Gang Wang, Guozhang Zou, Xing-jie Liang, Hao Yan, Baoquan Ding (2012)
DNA origami as a carrier for circumvention of drug resistance.Journal of the American Chemical Society, 134 32
C. Erben, Russell Goodman, A. Turberfield (2006)
Single-molecule protein encapsulation in a rigid DNA cage.Angewandte Chemie, 45 44
Hyukjin Lee, Abigail Lytton-Jean, Yi Chen, Kevin Love, Angela Park, Emmanouil Karagiannis, A. Sehgal, W. Querbes, Christopher Zurenko, M. Jayaraman, C. Peng, K. Charissé, A. Borodovsky, M. Manoharan, Jessica Donahoe, J. Truelove, M. Nahrendorf, R. Langer, Daniel Anderson (2012)
Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA DeliveryNature nanotechnology, 7
Z. Qian, Hongyan Li, Hongzhe Sun, K. Ho (2002)
Targeted Drug Delivery via the Transferrin Receptor-Mediated Endocytosis PathwayPharmacological Reviews, 54
Alan Shaw, Vanessa Lundin, Ekaterina Petrova, Ferenc Fördős, Erik Benson, Abdullah Al-Amin, A. Herland, A. Blokzijl, Björn Högberg, A. Teixeira (2014)
Spatial control of membrane receptor function using ligand nanocalipersNature Methods, 11
Qian Zhang, Qiao Jiang, Na Li, L. Dai, Qing Liu, Linlin Song, Jin-Ye Wang, Yaqian Li, Jie Tian, Baoquan Ding, Yang Du (2014)
DNA origami as an in vivo drug delivery vehicle for cancer therapy.ACS nano, 8 7
Souvik Modi, S. G., D. Goswami, G. Gupta, S. Mayor, Yamuna Krishnan (2009)
A DNA nanomachine that maps spatial and temporal pH changes inside living cells.Nature nanotechnology, 4 5
P. Rothemund (2006)
Folding DNA to create nanoscale shapes and patternsNature, 440
Souvik Modi, Clément Nizak, Sunaina Surana, Saheli Halder, Yamuna Krishnan (2013)
Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell.Nature nanotechnology, 8 6
E. Wagner, M. Cotten, K. Mechtler, H. Kirlappos, M. Birnstiel (1991)
DNA-binding transferrin conjugates as functional gene-delivery agents: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety.Bioconjugate chemistry, 2 4
R. Sørensen, A. Okholm, David Schaffert, A. Kodal, K. Gothelf, J. Kjems (2013)
Enzymatic ligation of large biomolecules to DNA.ACS nano, 7 9
Jiabing Chen, S. Gamou, A. Takayanagi, N. Shimizu (1994)
A novel gene delivery system using EGF receptor‐mediated endocytosisFEBS Letters, 338
G. Zhu, Jing Zheng, Erqun Song, M. Donovan, Kejing Zhang, Chen Liu, W. Tan (2013)
Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranosticsProceedings of the National Academy of Sciences, 110
M. Singh, H. Atwal, R. Micetich (1998)
Transferrin directed delivery of adriamycin to human cells.Anticancer research, 18 3A
R. Harbottle, R. Cooper, S. Hart, A. Ladhoff, T. McKay, A. Knight, E. Wagner, A. Miller, C. Coutelle (1998)
An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery.Human gene therapy, 9 7
Erik Benson, Abdulmelik Mohammed, Jan Gardell, S. Masich, E. Czeizler, P. Orponen, Björn Högberg (2015)
DNA rendering of polyhedral meshes at the nanoscaleNature, 523
C. Rosen, A. Kodal, J. Nielsen, David Schaffert, C. Scavenius, A. Okholm, N. Voigt, J. Enghild, J. Kjems, T. Tørring, K. Gothelf (2014)
Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins.Nature chemistry, 6 9
Kasper Jahn, T. Tørring, N. Voigt, R. Sørensen, Anne Kodal, E. Andersen, K. Gothelf, J. Kjems (2011)
Functional patterning of DNA origami by parallel enzymatic modification.Bioconjugate chemistry, 22 4
Q. Mei, Xixi Wei, F. Su, Yan Liu, C. Youngbull, Roger Johnson, S. Lindsay, Hao Yan, D. Meldrum (2011)
Stability of DNA origami nanoarrays in cell lysate.Nano letters, 11 4
Robert Lee, Philip Low (1994)
Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis.The Journal of biological chemistry, 269 5
Sunaina Surana, A. Shenoy, Yamuna Krishnan (2015)
Designing DNA nanodevices for compatibility with the immune system of higher organisms.Nature nanotechnology, 10 9
David Schaffert, E. Wagner (2008)
Gene therapy progress and prospects: synthetic polymer-based systemsGene Therapy, 15
V. Linko, A. Ora, M. Kostiainen (2015)
DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices.Trends in biotechnology, 33 10
Jaeseung Hahn, Shelley Wickham, W. Shih, S. Perrault (2014)
Addressing the Instability of DNA Nanostructures in Tissue CultureACS Nano, 8
P. Ray, M. Cheek, M. Sharaf, Na Li, A. Ellington, B. Sullenger, B. Shaw, R. White (2012)
Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells.Nucleic acid therapeutics, 22 5
C. Mao, T. LaBean, J. Reif, N. Seeman (2000)
Logical computation using algorithmic self-assembly of DNA triple-crossover moleculesNature, 407
J. Chao, Huajie Liu, Shao Su, Lianhui Wang, Wei Huang, C. Fan (2014)
Structural DNA nanotechnology for intelligent drug delivery.Small, 10 22
Tracy Daniels, E. Bernabeu, José Rodríguez, Shabnum Patel, Maggie Kozman, D. Chiappetta, E. Holler, J. Ljubimova, G. Helguera, M. Penichet (2012)
The transferrin receptor and the targeted delivery of therapeutic agents against cancer.Biochimica et biophysica acta, 1820 3
Shawn Douglas, I. Bachelet, G. Church (2012)
A Logic-Gated Nanorobot for Targeted Transport of Molecular PayloadsScience, 335
Yong-Xing Zhao, Alan Shaw, Xianghui Zeng, Erik Benson, Andreas Nyström, Björn Högberg (2012)
DNA origami delivery system for cancer therapy with tunable release properties.ACS nano, 6 10
R. Klausner, G. Ashwell, J. Renswoude, J. Harford, K. Bridges (1983)
Binding of apotransferrin to K562 cells: explanation of the transferrin cycle.Proceedings of the National Academy of Sciences of the United States of America, 80 8
DNA origami provides rapid access to easily functionalized, nanometer‐sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA‐based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA‐directed, site‐selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22‐fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface.
Small – Wiley
Published: May 1, 2016
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.