Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Picciotto, B. Caldarone, S. King, V. Zachariou (2000)
Nicotinic Receptors in the Brain: Links between Molecular Biology and BehaviorNeuropsychopharmacology, 22
R. Metherate, J. Ashe (1991)
Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptorsBrain Research, 559
A. Orr-Urtreger, F. Göldner, M. Saeki, I. Lorenzo, L. Goldberg, M. Biasi, J. Dani, J. Patrick, A. Beaudet (1997)
Mice Deficient in the α7 Neuronal Nicotinic Acetylcholine Receptor Lack α-Bungarotoxin Binding Sites and Hippocampal Fast Nicotinic CurrentsThe Journal of Neuroscience, 17
(1998)
Post - natal changes of nicotinic acetylcholine receptor α 2 , α 3 , α 4 , α 7 and β 2 subunits genes expression in rat brain
C. Vidal, J. Changeux (1993)
Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortexin vitroNeuroscience, 56
M. Zoli, C. Léna, M. Picciotto, J. Changeux (1998)
Identification of Four Classes of Brain Nicotinic Receptors Using β2 Mutant MiceThe Journal of Neuroscience, 18
A. Kuryatov, V. Gerzanich, Mark Nelson, F. Olale, J. Lindstrom (1997)
Mutation Causing Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Alters Ca2+ Permeability, Conductance, and Gating of Human α4β2 Nicotinic Acetylcholine ReceptorsThe Journal of Neuroscience, 17
B. Roerig, Darin Nelson, L. Katz (1997)
Fast Synaptic Signaling by Nicotinic Acetylcholine and Serotonin 5-HT3 Receptors in Developing Visual CortexThe Journal of Neuroscience, 17
(1993)
Cholinergic and noradrenergic modulation of the slow ( ≅ 0 . 3 Hz ) oscillation in neocortical cells
M. Bear, K. Carnes, F. Ebner (1985)
Postnatal changes in the distribution of acetylcholinesterase in kitten striate cortexJournal of Comparative Neurology, 237
M. Fusco, A. Becchetti, A. Patrignani, G. Annesi, A. Gambardella, A. Quattrone, A. Ballabio, E. Wanke, G. Casari (2000)
The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsyNature Genetics, 26
G. Buzsáki, RG Bickford, G. Ponomareff, LJ Thal, R. Mandel, FH Gage (1988)
Nucleus basalis and thalamic control of neocortical activity in the freely moving rat, 8
M. Hayman, I. Scheffer, Y. Chinvarun, S. Berlangieri, S. Berkovic (1997)
Autosomal dominant nocturnal frontal lobe epilepsy: Demonstration of focal frontal onset and intrafamilial variationNeurology, 49
R. Robertson, H. Poon, S. Mirrafati, J. Yu (1989)
Transient patterns of acetylcholinesterase activity in developing thalamus: a comparative study in rodents.Brain research. Developmental brain research, 48 2
R. Metherate, N. Tremblay, R. Dykes (1987)
Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortexNeuroscience, 22
A. Gambardella, G. Annesi, M. Fusco, A. Patrignani, U. Aguglia, F. Annesi, A. Pasqua, P. Spadafora, R. Oliveri, P. Valentino, M. Zappia, A. Ballabio, G. Casari, A. Quattrone (2000)
A new locus for autosomal dominant nocturnal frontal lobe epilepsy maps to chromosome 1Neurology, 55
L. Role, D. Berg (1996)
Nicotinic Receptors in the Development and Modulation of CNS SynapsesNeuron, 16
O. Steinlein, J. Mulley, P. Propping, R. Wallace, H. Phillips, G. Sutherland, I. Scheffer, S. Berkovic (1995)
A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsyNature Genetics, 11
E. Hösli, W. Rühl, L. Hösli (2000)
Histochemical and electrophysiological evidence for estrogen receptors on cultured astrocytes: colocalization with cholinergic receptorsInternational Journal of Developmental Neuroscience, 18
J. Porter, B. Cauli, K. Tsuzuki, B. Lambolez, J. Rossier, E. Audinat (1999)
Selective Excitation of Subtypes of Neocortical Interneurons by Nicotinic ReceptorsThe Journal of Neuroscience, 19
Z. Gil, B. Connors, Y. Amitai (1997)
Differential Regulation of Neocortical Synapses by Neuromodulators and ActivityNeuron, 19
S. Vincent, Keiji Satoh, D. Armstrong, H. Fibiger (1983)
Substance P in the ascending cholinergic reticular systemNature, 306
D. McGehee (1999)
Molecular Diversity of Neuronal Nicotinic Acetylcholine ReceptorsAnnals of the New York Academy of Sciences, 868
Cha-Min Tang, M. Margulis, Q. Shi, Alex Fielding (1994)
Saturation of postsynaptic glutamate receptors after quantal release of transmitterNeuron, 13
O. Steinlein, Andres Magnusson, J. Stoodt, S. Bertrand, S. Weiland, S. Berkovic, K. Nakken, P. Propping, D. Bertrand (1997)
An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy.Human molecular genetics, 6 6
E. Wada, K. Wada, J. Boulter, E. Deneris, S. Heinemann, J. Patrick, L. Swanson (1989)
Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the ratJournal of Comparative Neurology, 284
J. Matthews-Bellinger, M. Salpeter (1978)
Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications.The Journal of Physiology, 279
S. Vernino, M. Amador, C. Luetje, J. Patrick, J. Dani (1992)
Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptorsNeuron, 8
A. Figl, N. Viseshakul, N. Shafaee, J. Forsayeth, B. Cohen (1998)
Two mutations linked to nocturnal frontal lobe epilepsy cause use‐dependent potentiation of the nicotinic ACh responseThe Journal of Physiology, 513
N. Tremblay, R. Warren, R. Dykes (1990)
Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli.Journal of neurophysiology, 64 4
J. Clements, R. Lester, R. Lester, G. Tong, C. Jahr, G. Westbrook (1992)
The time course of glutamate in the synaptic cleft.Science, 258 5087
C. Mulle, C. Léna, J. Changeux (1992)
Potentiation of nicotinic receptor response by external calcium in rat central neuronsNeuron, 8
M. Picciotto, M. Zoli, C. Léna, A. Bessis, Y. Lallemand, N. LeNovère, P. Vincent, E. Pich, P. Brûlet, J. Changeux (1995)
Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brainNature, 374
James Zheng, Mark Felder, J. Connor, M. Poo (1994)
Turning of nerve growth cones induced by neurotransmittersNature, 368
PC Pugh, D. Berg (1994)
Neuronal acetylcholine receptors that bind alpha-bungarotoxin mediate neurite retraction in a calcium-dependent manner, 14
H. Phillips, I. Scheffer, Kathryn Crossland, K. Bhatia, D. Fish, C. Marsden, S. Howell, J. Stephenson, J. Tolmie, G. Plazzi, O. Eeg‐Olofsson, Rita Singh, Í. Lopes-Cendes, E. Andermann, F. Andermann, S. Berkovic, J. Mulley, J. Mulley (1998)
Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24.American journal of human genetics, 63 4
S. Hendry, E. Jones, H. Killackey, L. Chalupa (1987)
Choline acetyltransferase-immunoreactive neurons in fetal monkey cerebral cortex.Brain research, 465 1-2
(1990)
fects of quisqualic NB lesioning on passive avoidance and neocortical EEG
(1987)
Maturation of the EEG : development of waking and sleep patterns
Pj Whalen, B. Kapp, JP Pascoe (1994)
Neuronal activity within the nucleus basalis and conditioned neocortical electroencephalographic activation, 14
J. Smith, M. Fauquet, C. Ziller, N. Douarin (1979)
Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivoNature, 282
S. Hefft, S. Hulo, D. Bertrand, D. Muller (1999)
Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slicesThe Journal of Physiology, 515
S. Hirose, H. Iwata, H. Akiyoshi, Katsuhiro Kobayashi, M. Ito, K. Wada, S. Kaneko, A. Mitsudome (1999)
A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsyNeurology, 53
E. Vizi, B. Lendvai (1999)
Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous systemBrain Research Reviews, 30
K. Nakken, A. Magnússon, O. Steinlein (1999)
Autosomal Dominant Nocturnal Frontal Lobe Epilepsy: An Electroclinical Study of a Norwegian Family with Ten Affected MembersEpilepsia, 40
S. Wonnacott (1997)
Presynaptic nicotinic ACh receptorsTrends in Neurosciences, 20
M. Mckinney, J. Coyle, J. Hedreen (1983)
Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic systemJournal of Comparative Neurology, 217
M. Zoli, N. Novère, J. Hill, J. Changeux (1995)
Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems, 15
R. Broide, L. O'connor, M. Smith, J. Smith, F. Leslie (1995)
Developmental expression ofα7 neuronal nicotinic receptor messenger RNA in rat sensory cortex and thalamusNeuroscience, 67
R. Robertson (1987)
A morphogenic role for transiently expressed acetylcholinesterase in developing thalamocortical systems?Neuroscience Letters, 75
(1994)
Refinement of the localization of the gene for neuronal acetylcholine receptor α 4 sub - unit ( CHRNA 4 ) to human chromosome 20 q 13 . 2 – 13 . 3
M. Alkondon, E. Pereira, H. Eisenberg, E. Albuquerque (2000)
Nicotinic Receptor Activation in Human Cerebral Cortical Interneurons: a Mechanism for Inhibition and Disinhibition of Neuronal NetworksThe Journal of Neuroscience, 20
R. Broide, R. Robertson, F. Leslie (1996)
Regulation of α7 Nicotinic Acetylcholine Receptors in the Developing Rat Somatosensory Cortex by Thalamocortical AfferentsThe Journal of Neuroscience, 16
E. Hösli, L. Hösli (1999)
Cellular localization of estrogen receptors on neurones in various regions of cultured rat CNS: coexistence with cholinergic and galanin receptorsInternational Journal of Developmental Neuroscience, 17
O. Steinlein (1998)
New functions for nicotinic acetylcholine receptors?Behavioural Brain Research, 95
H. Phillips, I. Scheffer, S. Berkovic, G. Hollway, G. Hollway, G. Sutherland, G. Sutherland, J. Mulley (1995)
Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2Nature Genetics, 10
P. Shughrue, P. Scrimo, I. Merchenthaler (2000)
Estrogen binding and estrogen receptor characterization (ERα and ERβ) in the cholinergic neurons of the rat basal forebrainNeuroscience, 96
L. Marubio, M. Arroyo-Jiménez, M. Cordero-Erausquin, C. Léna, N. Novère, A. d’Exaerde, M. Huchet, M. Damaj, J. Changeux (1999)
Reduced antinociception in mice lacking neuronal nicotinic receptor subunitsNature, 398
(1999)
Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases.Brain : a journal of neurology, 122 ( Pt 6)
R. Girod, G. Crabtree, G. Ernstrom, J. Ramírez-Latorre, D. McGehee, J. Turner, L. Role (1999)
Heteromeric Complexes of α5 and/or α7 Subunits: Effects of Calcium and Potential Role in Nicotine‐Induced Presynaptic FacilitationAnnals of the New York Academy of Sciences, 868
M. Picciotto, M. Zoli, R. Rimondini, C. Léna, L. Marubio, E. Pich, K. Fuxe, J. Changeux (1998)
Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotineNature, 391
Daoyun Ji, John Dani (2000)
Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons.Journal of neurophysiology, 83 5
S. Weiland, V. Witzemann, A. Villarroel, P. Propping, O. Steinlein (1996)
An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kineticsFEBS Letters, 398
C. Léna, J. Changeux (1997)
Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disordersCurrent Opinion in Neurobiology, 7
I. Manns, A. Alonso, B. Jones (2000)
Discharge Properties of Juxtacellularly Labeled and Immunohistochemically Identified Cholinergic Basal Forebrain Neurons Recorded in Association with the Electroencephalogram in Anesthetized RatsThe Journal of Neuroscience, 20
Susan Jones, S. Sudweeks, J. Yakel (1999)
Nicotinic receptors in the brain: correlating physiology with functionTrends in Neurosciences, 22
M. Steriade, R. Dossi, A. Nuñez (1991)
Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression, 11
H. Sato, Y. Hata, K. Hagihara, T. Tsumoto (1987)
Effects of cholinergic depletion on neuron activities in the cat visual cortex.Journal of neurophysiology, 58 4
M. Mesulam, E. Mufson, B. Wainer, A. Levey (1983)
Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6)Neuroscience, 10
V. Aramakis, R. Metherate (1998)
Nicotine Selectively Enhances NMDA Receptor-Mediated Synaptic Transmission during Postnatal Development in Sensory NeocortexThe Journal of Neuroscience, 18
C. Vidal, J. Changeux (1989)
Pharmacological profile of nicotinic acetylcholine receptors in the rat prefrontal cortex: An electrophysiological study in a slice preparationNeuroscience, 29
A. Levey, B. Wainer, D. Rye, E. Mufson, M.-Marsel Mesulam (1984)
Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neuronsNeuroscience, 13
Fumitaka Kimura, Robert Baughman (1997)
Distinct muscarinic receptor subtypes suppress excitatory and inhibitory synaptic responses in cortical neurons.Journal of neurophysiology, 77 2
Felix Eckenstein, R. Baughman, Joseph Quinn (1988)
An anatomical study of cholinergic innervation in rat cerebral cortexNeuroscience, 25
(1995)
A clinician ’ s look at the developmental neurobiology of epilepsy
K. Lee, David McCormick (1995)
Acetylcholine excites GABAergic neurons of the ferret perigeniculate nucleus through nicotinic receptors.Journal of neurophysiology, 73 5
M. Mesulam, E. Mufson, A. Levey, B. Wainer (1984)
Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistryNeuroscience, 12
M. Steriade, D. McCormick, T. Sejnowski (1993)
Thalamocortical oscillations in the sleeping and aroused brain.Science, 262 5134
I. Scheffer, K. Bhatia, Í. Lopes-Cendes, David Fish, C. Marsden, E. Andermann, F. Andermann, R. Desbiens, Daniel Keene, Fernando Cendes, James Manson, Jules Constantinou, Anne Mclntosh, S. Berkovic (1995)
Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder.Brain : a journal of neurology, 118 ( Pt 1)
M. Mesulam, C. Geula (1991)
Acetylcholinesterase‐rich neurons of the human cerebral cortex: Cytoarchitectonic and ontogenetic patterns of distributionJournal of Comparative Neurology, 306
D. McCormick, T. Bal (1997)
Sleep and arousal: thalamocortical mechanisms.Annual review of neuroscience, 20
R. Metherate, C. Cox, J. Ashe (1992)
Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine, 12
David Paterson, A. Nordberg (2000)
Neuronal nicotinic receptors in the human brainProgress in Neurobiology, 61
A. Crespel, M. Baldy‐Moulinier, P. Coubes (1998)
The Relationship Between Sleep and Epilepsy in Frontal and Temporal Lobe Epilepsies: Practical and Physiopathologic ConsiderationsEpilepsia, 39
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a distinct human epileptic syndrome. In some families, it is associated with mutations of the α4 or the β2 subunit of the neuronal nicotinic acetylcholine receptor (nAChR). It has been suggested that these mutations are the causative factors responsible for the induction and expression of this syndrome. However, the pathogenic mechanisms leading to ADNFLE are unknown and, in this review, we discuss the following yet unresolved questions concerning the involvement of mutated nAChRs in the phenotypic development of the disorder: (1) why do seizures associated with ADNFLE arise explicitly from the frontal lobe of the neocortex? (2) why do the seizures arise mainly from sleep? (3) why does ADNFLE starts predominantly during childhood? A survey of our current knowledge on neocortical and thalamic cholinergic systems, including their ontogenetic development, leads us to the conclusion that there are, at least at the moment, no convincing answers to these questions. Furthermore, we believe that, even in those cases where mutations of the α4 or the β2 subunit of the nAChR cosegregate with ADNFLE, there must be some crucial additional factors contributing to the development of the specific symptoms of ADNFLE.
Pflügers Archiv European Journal of Physiologyl of Physiology – Springer Journals
Published: Aug 26, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.