Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Lipid-protein interactions in lipovitellin.

Lipid-protein interactions in lipovitellin. The refined molecular structure of lipovitellin is described using synchrotron cryocrystallographic data to 1.9 A resolution. Lipovitellin is the predominant lipoprotein found in the yolk of egg-laying animals and is involved in lipid and metal storage. It is thought to be related in amino acid sequence to segments of apolipoprotein B and the microsomal transfer protein responsible for the assembly of low-density lipoproteins. Lipovitellin contains a heterogeneous mixture of about 16% (w/w) noncovalently bound lipid, mostly phospholipid. Previous X-ray structural studies at ambient temperature described several different protein domains including a large cavity in each subunit of the dimeric protein. The cavity was free of any visible electron density for lipid molecules at room temperature, suggesting that only dynamic interactions exist with the protein. An important result from this crystallographic study at 100 K is the appearance of some bound ordered lipid along the walls of the binding cavity. The precise identification of the lipid type is difficult because of discontinuities in the electron density. Nonetheless, the conformations of 7 phospholipids and 43 segments of hydrocarbon chains greater than 5 atoms in length have been discovered. The conformations of the bound lipid and the interactions between protein and lipid provide insights into the factors governing lipoprotein formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemistry Pubmed

Lipid-protein interactions in lipovitellin.

Biochemistry , Volume 41 (30): 12 – Aug 22, 2002

Lipid-protein interactions in lipovitellin.


Abstract

The refined molecular structure of lipovitellin is described using synchrotron cryocrystallographic data to 1.9 A resolution. Lipovitellin is the predominant lipoprotein found in the yolk of egg-laying animals and is involved in lipid and metal storage. It is thought to be related in amino acid sequence to segments of apolipoprotein B and the microsomal transfer protein responsible for the assembly of low-density lipoproteins. Lipovitellin contains a heterogeneous mixture of about 16% (w/w) noncovalently bound lipid, mostly phospholipid. Previous X-ray structural studies at ambient temperature described several different protein domains including a large cavity in each subunit of the dimeric protein. The cavity was free of any visible electron density for lipid molecules at room temperature, suggesting that only dynamic interactions exist with the protein. An important result from this crystallographic study at 100 K is the appearance of some bound ordered lipid along the walls of the binding cavity. The precise identification of the lipid type is difficult because of discontinuities in the electron density. Nonetheless, the conformations of 7 phospholipids and 43 segments of hydrocarbon chains greater than 5 atoms in length have been discovered. The conformations of the bound lipid and the interactions between protein and lipid provide insights into the factors governing lipoprotein formation.

Loading next page...
 
/lp/pubmed/lipid-protein-interactions-in-lipovitellin-6LB6KQYWhn

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0006-2960
DOI
10.1021/bi025674w
pmid
12135361

Abstract

The refined molecular structure of lipovitellin is described using synchrotron cryocrystallographic data to 1.9 A resolution. Lipovitellin is the predominant lipoprotein found in the yolk of egg-laying animals and is involved in lipid and metal storage. It is thought to be related in amino acid sequence to segments of apolipoprotein B and the microsomal transfer protein responsible for the assembly of low-density lipoproteins. Lipovitellin contains a heterogeneous mixture of about 16% (w/w) noncovalently bound lipid, mostly phospholipid. Previous X-ray structural studies at ambient temperature described several different protein domains including a large cavity in each subunit of the dimeric protein. The cavity was free of any visible electron density for lipid molecules at room temperature, suggesting that only dynamic interactions exist with the protein. An important result from this crystallographic study at 100 K is the appearance of some bound ordered lipid along the walls of the binding cavity. The precise identification of the lipid type is difficult because of discontinuities in the electron density. Nonetheless, the conformations of 7 phospholipids and 43 segments of hydrocarbon chains greater than 5 atoms in length have been discovered. The conformations of the bound lipid and the interactions between protein and lipid provide insights into the factors governing lipoprotein formation.

Journal

BiochemistryPubmed

Published: Aug 22, 2002

There are no references for this article.