Access the full text.
Sign up today, get DeepDyve free for 14 days.
Nicolas Rennert, Annick Valibouze (1999)
Calcul de résolvantes avec les modules de CauchyExp. Math., 8
G. Renault, K. Yokoyama (2008)
Multi-modular algorithm for computing the splitting field of a polynomial
Philippe Aubry, A. Valibouze (1998)
Using Galois Ideals for Computing Relative ResolventsJ. Symb. Comput., 30
M. Lederer (2004)
Explicit Constructions in Splitting Fields of Polynomials
S. Orange, G. Renault, K. Yokoyama (2009)
Computation schemes for splitting fields of polynomials
H. Anai, M. Noro, K. Yokoyama (1996)
Computation of the splitting fields and the Galois groups of polynomials, 143
S. Orange (2006)
Calcul de corps de décomposition : utilisations fines d' ensembles de permutations en théorie de Galois effective
X. Dahan, É. Schost (2004)
Sharp estimates for triangular sets
H. Cohen (1993)
A course in computational algebraic number theory, 138
W. Bosma, John Cannon, Catherine Playoust (1997)
The Magma Algebra System I: The User LanguageJ. Symb. Comput., 24
G. Díaz-Toca, H. Lombardi (2010)
Dynamic Galois TheoryJ. Symb. Comput., 45
Lars Langemyr (1991)
Algorithms for a Multiple Algebraic Extension II
M. Pohst, H. Zassenhaus (1989)
Algorithmic algebraic number theory, 30
David Cox, J. Little, D. O'Shea (1997)
Ideals, Varieties, and AlgorithmsAmerican Mathematical Monthly, 101
K. Geissler, Jürgen Klüners (2000)
Galois Group Computation for Rational PolynomialsJ. Symb. Comput., 30
A. Bostan, Muhammad Chowdhury, J. Hoeven, É. Schost (2009)
Homotopy techniques for multiplication modulo triangular setsJ. Symb. Comput., 46
G. Renault, K. Yokoyama (2006)
A Modular Method for Computing the Splitting Field of a Polynomial
I. Abdeljaouad-Tej, S. Orange, G. Renault, A. Valibouze (2004)
Computation of the Decomposition Group of a Triangular IdealApplicable Algebra in Engineering, Communication and Computing, 15
Xin Li, M. Maza, É. Schost (2007)
Fast arithmetic for triangular sets: from theory to practiceJ. Symb. Comput., 44
L. Ducos (2000)
Construction de corps de décomposition grace aux facteurs de résolvantesCommunications in Algebra, 28
K. Yokoyama (1997)
A modular method for computing the Galois groups of polynomialsJournal of Pure and Applied Algebra, 118
In this article, we present new results for efficient arithmetic operations in a number field K represented by successive extensions. These results are based on multi-modular and evaluation–interpolation techniques. We show how to use intrinsic symmetries in order to increase the efficiency of these techniques. Applications to splitting fields of univariate polynomials are presented.
Mathematics in Computer Science – Springer Journals
Published: May 24, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.