Access the full text.
Sign up today, get DeepDyve free for 14 days.
X Xu (2010)
A New Divergence-Free Interpolation Operator with Applications to the Darcy–Stokes–Brinkman EquationsSIAM J. Sci. Comput., 32
S Sauter (2023)
On the inf-sup stability of Crouzeix-Raviart Stokes elements in 3DMath. Comp., 92
S Zhang (2005)
A new family of stable mixed finite elements for the 3D Stokes equationsMath. Comp., 74
W Cai (2017)
High Order Hierarchical Divergence-Free Constrained Transport H(div) Finite Element Method for Magnetic Induction EquationNumer. Math. Theory Methods Appl., 10
M Neilan (2015)
Discrete and conforming smooth de Rham complexes in three dimensionsMath. Comp., 84
S Zhang (2011)
Quadratic divergence-free finite elements on Powell–Sabin tetrahedral gridsCalcolo, 48
V John (2024)
Inf-sup stabilized Scott–Vogelius pairs on general shape-regular simplicial grids by Raviart–Thomas enrichmentMath. Models Methods Appl. Sci., 34
S Zhang (2011)
Divergence-free finite elements on tetrahedral grids for $k\ge6$Math. Comp., 80
M Fortin (1983)
A non-conforming piecewise quadratic finite element on trianglesInternat. J. Numer. Methods Engrg., 19
S Zhang (2024)
BDM H(div) weak Galerkin finite element methods for Stokes equationsAppl. Numer. Math., 197
Y Huang (2011)
A lowest order divergence-free finite element on rectangular gridsFront. Math. China, 6
KA Mardal (2002)
A Robust Finite Element Method for Darcy--Stokes FlowSIAM J. Numer. Anal., 40
J Guzmán (2014)
Conforming and divergence-free Stokes elements in three dimensionsIMA J. Numer. Anal., 34
G Matthies (2005)
Inf-sup stable non-conforming finite elements of arbitrary order on trianglesNumer. Math., 102
LR Scott (1985)
Lect. Appl. Math., 22
L Mu (2018)
A discrete divergence free weak Galerkin finite element method for the Stokes equationsAppl. Numer. Math., 125
S Zhang (2009)
A Family of $Q_{k+1,k}\timesQ_{k,k+1}$ Divergence-Free Finite Elements on Rectangular GridsSIAM J. Numer. Anal., 47
LR Scott (1985)
Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomialsModelisation Math. Anal. Numer., 19
A Baran (2007)
Gauss-Legendre elements: a stable, higher order non-conforming finite element familyComputing, 79
M Fortin (1985)
A three-dimensional quadratic nonconforming elementNumer. Math., 46
Y Huang (2025)
A P 2 H-Div-Nonconforming-H-Curl Finite Element for the Stokes Equations on Triangular MeshesComput. Methods Appl. Math., 25
J Guzmán (2018)
Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence--Free Approximations in Arbitrary DimensionsSIAM J. Numer. Anal., 56
C Bacuta (2011)
A new approach for solving stokes systems arising from a distributive relaxation methodNumer. Methods Partial Diff. Eqs., 27
P Ciarlet (2018)
A family of Crouzeix–Raviart finite elements in 3DAnal. Appl. (Singap.), 16
R Stenberg (1990)
Error analysis of some finite element methods for the Stokes problemMath. Comp., 54
RS Falk (2013)
Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass ConservationSIAM J. Numer. Anal., 51
X Xie (2008)
J. Comput. Math., 26
X Ye (2021)
A numerical scheme with divergence free H-div triangular finite element for the Stokes equationsAppl. Numer. Math., 167
G Fu (2020)
Exact smooth piecewise polynomial sequences on Alfeld splitsMath. Comp., 89
W Chen (2023)
Nonconforming Finite Element Methods of Order Two and Order Three for the Stokes Flow in Three DimensionsJ. Sci. Comput., 97
M Crouzeix (1989)
Nonconforming finite elements for the Stokes problemMath. Comp., 52
S Zhang (2025)
A Nonconforming P2 and Discontinuous P1 Mixed Finite Element on Tetrahedral GridsAdv. Appl. Math. Mech., 17
LR Scott (1990)
Finite element interpolation of nonsmooth functions satisfying boundary conditionsMath. Comp., 54
X Tai (2006)
A discrete de Rham complex with enhanced smoothnessCalcolo, 43
S Zhang (2008)
J. Comp. Math., 26
A nonconforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element is constructed by enriching the conforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element space with nine P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} nonconforming bubbles, on each tetrahedron. Here, the divergence of the P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} bubble is not a P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} polynomial, but a P2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_2$$\end{document} polynomial. This nonconforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element, combined with the discontinuous P2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_2$$\end{document} finite element, is inf-sup stable for solving the Stokes equations on general tetrahedral grids. Consequently, such a mixed finite element method produces quasi-optimal solutions for solving the stationary Stokes equations. With these special P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} bubbles, the discrete velocity remains locally pointwise divergence-free. Numerical tests confirm the theory.
Advances in Computational Mathematics – Springer Journals
Published: Aug 1, 2025
Keywords: Discontinuous finite element; Nonconforming finite element; Mixed finite element; Stokes equations; Tetrahedral grid; Primary 65N15; 65N30; 76M10
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.