Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

A nonconforming P3+B4 and discontinuous P2 mixed finite element on tetrahedral grids

A nonconforming P3+B4 and discontinuous P2 mixed finite element on tetrahedral grids A nonconforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element is constructed by enriching the conforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element space with nine P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} nonconforming bubbles, on each tetrahedron. Here, the divergence of the P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} bubble is not a P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} polynomial, but a P2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_2$$\end{document} polynomial. This nonconforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element, combined with the discontinuous P2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_2$$\end{document} finite element, is inf-sup stable for solving the Stokes equations on general tetrahedral grids. Consequently, such a mixed finite element method produces quasi-optimal solutions for solving the stationary Stokes equations. With these special P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} bubbles, the discrete velocity remains locally pointwise divergence-free. Numerical tests confirm the theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Computational Mathematics Springer Journals

A nonconforming P3+B4 and discontinuous P2 mixed finite element on tetrahedral grids

Loading next page...
 
/lp/springer-journals/a-nonconforming-p3-b4-and-discontinuous-p2-mixed-finite-element-on-5DYcTiIQYn

References (41)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025
ISSN
1019-7168
eISSN
1572-9044
DOI
10.1007/s10444-025-10244-w
Publisher site
See Article on Publisher Site

Abstract

A nonconforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element is constructed by enriching the conforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element space with nine P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} nonconforming bubbles, on each tetrahedron. Here, the divergence of the P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} bubble is not a P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} polynomial, but a P2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_2$$\end{document} polynomial. This nonconforming P3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_3$$\end{document} finite element, combined with the discontinuous P2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_2$$\end{document} finite element, is inf-sup stable for solving the Stokes equations on general tetrahedral grids. Consequently, such a mixed finite element method produces quasi-optimal solutions for solving the stationary Stokes equations. With these special P4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P_4$$\end{document} bubbles, the discrete velocity remains locally pointwise divergence-free. Numerical tests confirm the theory.

Journal

Advances in Computational MathematicsSpringer Journals

Published: Aug 1, 2025

Keywords: Discontinuous finite element; Nonconforming finite element; Mixed finite element; Stokes equations; Tetrahedral grid; Primary 65N15; 65N30; 76M10

There are no references for this article.