Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Best, Bin Li, Annette Steward, V. Daggett, J. Clarke (2001)
Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation.Biophysical journal, 81 4
F. John
Stretching DNA
R. Varadan, O. Walker, C. Pickart, D. Fushman (2002)
Structural properties of polyubiquitin chains in solution.Journal of molecular biology, 324 4
D. Brockwell, Emanuele Paci, Rebecca Zinober, Godfrey Beddard, Peter Olmsted, D. Smith, Richard Perham, Sheena Radford (2003)
Pulling geometry defines the mechanical resistance of a β-sheet proteinNature Structural Biology, 10
F. Oesterhelt, Dieter Oesterhelt, Matthias Pfeiffer, Andreas Engel, H. Gaub, Daniel Müller (2000)
Unfolding pathways of individual bacteriorhodopsins.Science, 288 5463
C. Pickart (2001)
Mechanisms underlying ubiquitination.Annual review of biochemistry, 70
D. Brockwell, G. Beddard, J. Clarkson, Rebecca Zinober, Anthony Blake, J. Trinick, P. Olmsted, D. Smith, S. Radford (2002)
The effect of core destabilization on the mechanical resistance of I27.Biophysical journal, 83 1
W. Humphrey, A. Dalke, K. Schulten (1996)
VMD: visual molecular dynamics.Journal of molecular graphics, 14 1
Rosemary Rochford, Josan Chung, Max Shapiro, Robert Purcell, F. Chisari (1999)
Chaperonin function: folding by forced unfolding.Science, 284 5415
R. Vale (2000)
Mini-Review AAA Proteins: Lords of the Ring
Julia Thrower, L. Hoffman, M. Rechsteiner, C. Pickart (2000)
Recognition of the polyubiquitin proteolytic signalThe EMBO Journal, 19
B Brooks (1983)
CHARMM: a program for macromolecular energy, minimization and molecular dynamics calculationsJ. Comp. Chem., 4
William Cook, Leigh Jeffrey, Eileen Kasperek, Cecile Pickart (1994)
Structure of tetraubiquitin shows how multiubiquitin chains can be formed.Journal of molecular biology, 236 2
J. Sambrook, E. Fritsch, T. Maniatis (2001)
Molecular Cloning: A Laboratory Manual
R. Chace (1994)
Lords of the ringNew York Times Book Review
R. Best, Susan Fowler, J. Toca-Herrera, J. Clarke (2002)
A simple method for probing the mechanical unfolding pathway of proteins in detailProceedings of the National Academy of Sciences of the United States of America, 99
Mu Gao, Hui Lu, K. Schulten (2001)
Simulated refolding of stretched titin immunoglobulin domains.Biophysical journal, 81 4
DJ Brockwell (2003)
Pulling geometry defines the mechanical resistance of a β-sheet proteinStruct. Biol., 10
S. Vijay-Kumar, C. Bugg, W. Cook (1987)
Structure of ubiquitin refined at 1.8 A resolution.Journal of molecular biology, 194 3
M. Hochstrasser, Jimin Wang (2001)
Unraveling the means to the end in ATP-dependent proteasesNature Structural Biology, 8
P. Lenne, A. Raae, S. Altmann, M. Saraste, J. Hörber (2000)
States and transitions during forced unfolding of a single spectrin repeatFEBS Letters, 476
Ove Wiborg, Marianne Pedersen, '. AnetteWind, Lars Berglund, Kjeld Marcker, Jens Vuust (1985)
The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences.The EMBO Journal, 4
A. Oberhauser, P. Hansma, M. Carrión-Vázquez, Julio Fernandez (2001)
Stepwise unfolding of titin under force-clamp atomic force microscopy.Proceedings of the National Academy of Sciences of the United States of America, 98 2
P. Marszalek, Hui Lu, Hongbin Li, M. Carrión-Vázquez, A. Oberhauser, K. Schulten, Julio Fernandez (1999)
Mechanical unfolding intermediates in titin modulesNature, 402
Hui Lu, B. Isralewitz, A. Krammer, V. Vogel, K. Schulten (1998)
Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.Biophysical journal, 75 2
B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, M. Karplus (1983)
CHARMM: A program for macromolecular energy, minimization, and dynamics calculationsJournal of Computational Chemistry, 4
Hongbin Li, W. Linke, A. Oberhauser, M. Carrión-Vázquez, Jason Kerkvliet, Hui Lu, P. Marszalek, Julio Fernandez (2002)
Reverse engineering of the giant muscle protein titinNature, 418
M. Carrión-Vázquez, A. Oberhauser, Susan Fowler, P. Marszalek, S. Broedel, J. Clarke, Julio Fernandez (1999)
Mechanical and chemical unfolding of a single protein: a comparison.Proceedings of the National Academy of Sciences of the United States of America, 96 7
A. Oberhauser, P. Marszalek, H. Erickson, Julio Fernandez (1998)
The molecular elasticity of the extracellular matrix protein tenascinNature, 393
M. Rief, M. Gautel, F. Oesterhelt, Julio Fernandez, H. Gaub (1997)
Reversible unfolding of individual titin immunoglobulin domains by AFM.Science, 276 5315
A. Navon, Alfred Goldberg (2001)
Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome.Molecular cell, 8 6
Guoliang Yang, C. Cecconi, W. Baase, I. Vetter, W. Breyer, J. Haack, B. Matthews, F. Dahlquist, Carlos Bustamante (2000)
Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme.Proceedings of the National Academy of Sciences of the United States of America, 97 1
E. Evans, K. Ritchie (1997)
Dynamic strength of molecular adhesion bonds.Biophysical journal, 72 4
Hongbin Li, M. Carrión-Vázquez, A. Oberhauser, P. Marszalek, Julio Fernandez (2000)
Point mutations alter the mechanical stability of immunoglobulin modulesNature Structural Biology, 7
Cheolju Lee, Michael Schwartz, Sumit Prakash, M. Iwakura, A. Matouschek (2001)
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal.Molecular cell, 7 3
Richard Beal, David Toscano-Cantaffa, P. Young, M. Rechsteiner, C. Pickart (1998)
The hydrophobic effect contributes to polyubiquitin chain recognition.Biochemistry, 37 9
M Nelson (1996)
NAMD—A parallel, object-oriented molecular dynamics programJ. Supercomp. Appl., 10
Hongbin Li, A. Oberhauser, Susan Fowler, J. Clarke, Julio Fernandez (2000)
Atomic force microscopy reveals the mechanical design of a modular protein.Proceedings of the National Academy of Sciences of the United States of America, 97 12
Hui Lu, K. Schulten (2000)
The key event in force-induced unfolding of Titin's immunoglobulin domains.Biophysical journal, 79 1
S. Khorasanizadeh, I. Peters, T. Butt, H. Roder (1993)
Folding and stability of a tryptophan-containing mutant of ubiquitin.Biochemistry, 32 27
(2001)
Themes and variations on ubiquitylation
Shih-Peng Huang, K. Ratliff, Michael Schwartz, Jonathan Spenner, A. Matouschek (1999)
Mitochondria unfold precursor proteins by unraveling them from their N-terminiNature Structural Biology, 6
A. Minajeva, M. Kulke, Julio Fernandez, W. Linke (2001)
Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.Biophysical journal, 80 3
RD Vale (2000)
AAA proteins. Lords of the ringJ. Cell Biol., 150
Thomas Fisher, P. Marszalek, Julio Fernandez (2000)
Stretching single molecules into novel conformations using the atomic force microscopeNature Structural Biology, 7
Mark Nelson, W. Humphrey, Attila Gürsoy, A. Dalke, L. Kalé, R. Skeel, K. Schulten (1996)
NAMD: a Parallel, Object-Oriented Molecular Dynamics ProgramInternational Journal of High Performance Computing Applications, 10
A. Horwich, E. Weber-Ban, D. Finley (1999)
Chaperone rings in protein folding and degradation.Proceedings of the National Academy of Sciences of the United States of America, 96 20
W. Baumeister, Z. Cejka, M. Kania, E. Seemüller (1997)
The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment.Biological chemistry, 378 3-4
Ubiquitin chains are formed through the action of a set of enzymes that covalently link ubiquitin either through peptide bonds or through isopeptide bonds between their C terminus and any of four lysine residues. These naturally occurring polyproteins allow one to study the mechanical stability of a protein, when force is applied through different linkages. Here we used single-molecule force spectroscopy techniques to examine the mechanical stability of N-C–linked and Lys48-C–linked ubiquitin chains. We combined these experiments with steered molecular dynamics (SMD) simulations and found that the mechanical stability and unfolding pathway of ubiquitin strongly depend on the linkage through which the mechanical force is applied to the protein. Hence, a protein that is otherwise very stable may be easily unfolded by a relatively weak mechanical force applied through the right linkage. This may be a widespread mechanism in biological systems.
Nature Structural & Molecular Biology – Springer Journals
Published: Aug 17, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.