Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract The mechanisms mediating hyperglycemia-mediated myocardial cell death are poorly defined. Since elevated flux through the hexosamine biosynthetic pathway (HBP) is closely linked with the diabetic phenotype, we hypothesized that hyperglycemia-mediated oxidative stress results in greater O -GlcNAcylation (HBP end product) of the proapoptotic peptide BAD, thereby increasing myocardial apoptosis. H9c2 cardiomyoblasts were exposed to high glucose (33 mM) ± HBP modulators ± antioxidant treatment for 5 days vs. matched controls (5.5 mM), and we subsequently evaluated apoptosis by immunoblotting, immunofluorescence staining, and caspase activity measurements. In vitro reactive oxygen species (ROS) levels were quantified by 2′,7′-dichlorodihydrofluorescein diacetate staining (fluorescence microscopy and flow cytometry). We determined total and BAD O -GlcNAcylation, respectively, by immunoblotting and immunofluorescence microscopy. The current study shows that high glucose treatment of cells significantly increased the degree of apoptosis. In parallel, overall O -GlcNAcylation, BAD O -GlcNAcylation, and ROS levels were increased. HBP inhibition and antioxidant treatment attenuated these effects, while increased end product levels exacerbated it. As BAD-Bcl-2 dimer formation enhances apoptosis, we performed immunoprecipitation analysis and colocalization and found increased dimerization in cells exposed to hyperglycemia. Our study identified a novel pathway whereby hyperglycemia results in greater oxidative stress and increased HBP activation and BAD O -GlcNAcylation in H9c2 cardiomyoblasts. Since greater BAD-Bcl-2 dimerization increases myocardial apoptosis, this pathway may play a crucial role in diabetes-related onset of heart diseases. oxidative stress heart cell death O -GlcNAc Copyright © 2010 the American Physiological Society
AJP - Cell Physiology – The American Physiological Society
Published: Jul 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.